1 3.159. Дана функция f (x)
. Найдите:
1) f(0,5)=f(1); 2) f(1)=f(1,5); 3) f(1,5)=f(2,5).
Функция y=f(x), определенная на промежутке от а до b, называется
возрастающей, если для любых х, их,, удовлетворяющих неравенству
а<x, x, b, верно неравенство:
f(x)=f(x).
(1)
Если вместо неравенства (1) выполняется неравенство
f(x)=f(x),
(2)
то функция y=f(x) называется убывающей на промежутке от а до b. Таким
образом, функция называется возрастающей на промежутке от а до
b, если на этом промежутке большему значению аргумента соответ-
ствует большее значение функции, а меньшему значению аргумента
соответствует меньшее значение функции. Напротив, функция на-
зывается убывающей, если большему значению аргумента соответ-
ствует меньшее значение функции, а меньшему значению аргумента
соответствует большее значение функции.
Например, если x>0 (или х<0), то функция f (x) = является убы-
вающей. В самом деле, если о<x, x, (случай хх,доказывается ана-
логично), то
1
f(x) = f (x, )
X х х, xx,
1
х
1
x, — хі — 0,
k
где x, x, 50 их •x, -0. Тогда f(x)=f(x), т.е. функция убывает.
Если x>0 (или х<0), то функция f(x) при k>0 является убываю-
щей (при k<0 является возрастающей). Докажите это утверждение.
х
ответ:
объяснение:
1. рассмотрим параллелограмм авсд.
s=ah, а= 6 это следует h=4
2.рассмотрим δ аве, в=5, h=4. тогда по теореме пифагора
хво2степени =5 в степени2 - 4 в степени2 =9
х=3, т.е. ае=дк=3, это следует
3. ед=ад-ае=3
4. рассмотрим δвед, по теореме пифагора следует
хво 2 степени=3во 2степени+4во второй степени=25
×=5,т.е. вд=5
5.проведем дополнительную высоту ск с вершины с и соединяем с основанием ад
6. рассмотрим δ аск, ак=9, ск=4⇒ по теореме пифагора
хво 2степени=9во2степени+4 во 2степени=97
×=√97, т.е. ас=√97
точка а находится на одинаковом расстоянии от всех вершин равностороннего треугольника, => точка а проектируется в центр правильного треугольника.
найти длину перпендикуляра н.
центр правильного треугольника - точка пересечения медиан, высот, биссектрис, в которой они делятся в отношении 2: 3, считая от вершины.
высота h правильного треугольника вычисляется по формуле: h=a√3/2.
h=(4√3)*√3/2, h=6 см.
рассмотрим прямоугольный треугольник: катет - высота н, катет - (2/3)h=4 см, гипотенуза - расстояние от точки а до вершин треугольника =5 см.
по теореме пифагора: 5²=н²+4². н=3 см
ответ: расстояние от точки а до плоскости треугольника 3 см