постройте плоскость, которая : а) проходит через данную точку А и параллельна данной прямой. m. б) проходит через данную прямую a и параллельна данной прямой m. в) проходит через данную точку А и параллельна данным прямым а и m (желательно чтобы с рисунком было решение)
Дано:
△ABC;
AB + BC = 27 см;
AB + AC = 28 см;
BC + AC = 29 с;
Найти: P△ABC
P△ABC = AB + BC + AC
1) Выразим AB из первого уравнения:
AB = 27 - BC
Подставим то, что получилось сейчас во второе уравнение вместо AB:
27 - BC + AC = 28
-BC + AC = 28 - 27
AC - BC = 1 (т.е. AC на 1 больше, чем BC)
2)BC + AC = 29
Из пункта 1 => BC = (29 - 1) : 2
BC = 28 : 2
BC = 14 см
AC = BC + 1 => AC = 14 + 1 = 15 см
3)Теперь, когда нам известны AC и BC, мы можем найти AB:
т.к. AB + BC = 27:
AB + 14 = 27
AB = 27 - 14
AB = 13
4) P△ABC = 13 + 14 + 15 = 42 см
ответ: P△ABC = 42 см(Решение написала на русском, я просто украинский не знаю, но, всё же, надеюсь, что ))
Каждая сторона треугольника меньше суммы двух других сторон.
Следствие:
Для любых трех точек А, В и С, не лежащих на одной прямой справедливы неравенства: АВ<АС+ВС, АС<АВ+ВС, ВС<АС+АВ.
Теорема о соотношении между сторонами и углами треугольника:
В треугольнике:1) Напротив большего угла лежит большая сторона и обратно 2) напротив большей стороны лежит больший угол.
Следствия:
1)В прямоугольном треугольнике гипотенуза всегда больше катета
2)Если в треугольнике два угла равны, то он равнобедренный(признак равнобедренного треугольника).