В
Все
Б
Биология
Б
Беларуская мова
У
Українська мова
А
Алгебра
Р
Русский язык
О
ОБЖ
И
История
Ф
Физика
Қ
Қазақ тiлi
О
Окружающий мир
Э
Экономика
Н
Немецкий язык
Х
Химия
П
Право
П
Психология
Д
Другие предметы
Л
Литература
Г
География
Ф
Французский язык
М
Математика
М
Музыка
А
Английский язык
М
МХК
У
Українська література
И
Информатика
О
Обществознание
Г
Геометрия
ksuynya2007
ksuynya2007
27.12.2020 09:27 •  Геометрия

подалуйста! геометрия


подалуйста! геометрия

Показать ответ
Ответ:
artempirogov20p08sav
artempirogov20p08sav
04.04.2020 12:06
Я только про внешние - мне интересен подход к задаче, я ради него и выкладываю решение.
На сторонах произвольного треугольника построены правильные треугольники. Доказать, что центры тяжести этих треугольников - вершины правильного треугольника.
Прежде, чем начать доказательство, взгляните на чертеж.
На чертеже представлено периодическое покрытие плоскости треугольниками, соответствующее условию задачи. Собственно условие обведено красным в левом верхнем углу чертежа (просто для демонстрации). На плоскости присутствуют треугольники, полученные простым смещением исходного, а также - полученные их них поворотом на 120 и 240 градусов (и правильные треугольники треух разных в общем случае размеров). Само покрытие (на практике) получено просто параллельным переносом фигуры, обведенной фиолетовым цветом. Это неправильный шестиугольник с параллельными противоположными сторонами. Тут могут возникать вопросы типа "а почему стороны параллельны?". Это очень просто доказывается сравнением углов между прямыми (по сути там везде задействованы углы исходного треугольника и угол 60 градусов).
В качестве ячейки можно было бы выбрать любой из вариантов, обведенных сиреневым цветом, эти ячейки получаются из фиолетового поворотами на 120 и 240 градусов.)
Теперь - доказательство.
В правой стороне чертежа изображена неправильная шестивершинная звезда. Построена она так - выбран какой-то правильный треугольник (проще всего, если - с максимальной стороной). К каждой из его сторон "пристроены" треугольники, равные исходному, а на их сторонах построены правильные треугольники (напоминаю, все это является частью покрытия, то есть возникло просто в результате многократного размножения фиолетовой ячейки). Легко видеть, что если соединить центры треугольников при вершинах звезды (темно зеленый шестиугольник), то эта фигура будет инвариантна относительно поворотов на 120 и 240 градусов (вокруг центра "большого правильного треугольника в центре звезды) - то есть у них равны стороны "через одну". Но также очевидно, что равны противоположные стороны, они получаются друг из друга параллельным сдвигом. Вместе эти два утверждения означают, что это правильный шестиугольник (можно увидеть равенство сторон и по другому - они соединяют сходственные точки в разных "ячейках"). Диагонали этого шестиугольника проходят через центр симметрии фигуры и делят его на 6 правильных треугольников, каждый из которых завершает доказательство - вершины каждого из них удовлетворяют задаче.
И ни одной формулы. :)

Сформулировать и доказать теорему наполеона (желательно, но не обязательно -для внешнего и внутренне
0,0(0 оценок)
Ответ:
dfasha1084402
dfasha1084402
12.03.2023 21:11
ΔАВО: ОА = ОВ = R,
             AB = R по условию, значит треугольник АВО равносторонний,
⇒ ∠АОВ = 60°

∠АОВ - центральный, опирается на дугу АВ.
∠АСВ - вписанный, опирается на ту же дугу, значит,
∠АСВ = ∠АОВ/2 = 60°/2 = 30°.

∠АМС = ∠BMD = 120° как вертикальные.
ΔАМС: ∠АМС = 120°, ∠АСМ = 30°, ⇒∠САМ = 30°,
т.е. треугольник АМС равнобедренный, АМ = СМ.

Пусть х - коэффициент пропорциональности,
Тогда ВМ = 2х, МС = 3х.

∠АМВ = 180° - ∠BMD = 180° - 120° = 60° как смежные.

ΔАМВ: BM = 2x, AM = 3x, AB = R, ∠AMB = 60°.
По теореме косинусов:
АВ² = АМ² + МВ² - 2·АМ·МВ·cos60°
R² = 9x² + 4x² - 2·3x·2x·1/2
R² = 13x² - 6x²
7x² = R²
x = R/√7

BC = 5x = 5R/√7 = 5R√7 / 7
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота