Побудуйте довільний трикутник ABC. Побудуйте трикутник, симетричний побудованому відносно точки: а) А;
б) В;
в) яка лежить зовні трикутника;
г) яка лежить усередині трикутника.
2. Побудуйте чотирикутник ABCD, у якого А(1; 1), В(-1; 1), С(1; 3) і D(-1; 3). Побудуйте чотирикутник, який симетричний побудованому чотири-кутнику відносно точки О.
3. Побудуйте довільний трикутник ABC і симетричний йому трикутник відносно осі:
а) АВ; б) ВС.
4. Скільки осей симетрії має:
а) коло;
б) прямокутник;
в) квадрат;
г) ромб;
д) рівносторонній трикутник?
Нужно решить как можно быстрее, все балы отдаю, за ранее !
Произведения длин отрезков, на которые разбита точкой пересечения каждая из хорд, равны.
Пусть это будут хорды АВ и СМ, Е -точка их пересечения.
АЕ=ВЕ, СЕ=3, МЕ=12
Сделаем рисунок. Соединим А и М, С и В.
Рассмотрим получившиеся треугольники АЕМ и ВЕС
Они имеют два угла, опирающихся на одну и ту же дугу, следовательно, эти углы равны. Третий их угол также равен. ⇒
Треугольники АЕМ и ВЕС подобны
Из подобия следует отношение:
АЕ:СЕ=МЕ:ВЕ
АЕ*ВЕ=СЕ*МЕ
Так как АЕ=ВЕ, то
АЕ²=3*12=36
АЕ=√36=6,
АВ=2 АЕ=12 см
Рассмотрим одну из вершин трапеции и отрезки сторон, соединяющие эту вершину с точками, в которых окружность касается сторон.
Эти отрезки равны между собой как отрезки касательных, проведённых к окружности из одной точки.
Такое рассуждение можно провести для всех 4-х вершин.
Таким образом, наша трапеция "собрана" из отрезков 4-х видов (длин) , каждый повторяется по 2 раза. Назовём эти длины А, В, С и D.
Периметр трапеции - это 2(А+В+С+D)=12.
Далее, средняя линия трапеции равна полусумме её оснований. Основания также складываются из наших 4-х отрезков. Сумма оснований будет (А+В+С+D)=12/2=6.
Полусумма - (А+В+С+D)/2=6/2=3.