Плоскость, параллельная стороне АВ треугольника АВK, пересекает его стороны Аk и ВK в точках C и D соответственно. Известно, что АС = 6 см, CK = 8 см. Найдите стороны CD.
Т.к. боковые ребра пирамиды равны, то и их проекции на основание тоже равны, следовательно, основание высоты пирамиды будет центр описанной около прямоугольного треугольника окружности)) известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы. в основании египетский треугольник, т.е. гипотенуза =10 высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10) h² = 13² - 5² = (13-5)(13+5) = 8*18 h = 4*3 = 12
известно: вписанный прямой угол опирается на диаметр, т.е. центр описанной около прямоугольного треугольника окружности --это середина гипотенузы.
в основании египетский треугольник, т.е. гипотенуза =10
высота пирамиды --это высота боковой грани (треугольника со сторонами 13, 13, 10)
h² = 13² - 5² = (13-5)(13+5) = 8*18
h = 4*3 = 12
Так как точка ВМ – медиана, то точка М – середина стороны АС и СМ=АМ=9 см, тогда АС=СМ+АМ=9+9=18 см;
МК//ВС по условию;
Тогда МК – средняя линия ∆АВС, так как проходит через середину одной из сторон треугольника и параллелен другой.
Исходя из этого: АК=ВК=8 см.
Тогда точка К – середина АВ.
NK//AC по условию
Следовательно NK – средняя линия ∆АВС, так как проходит через середину одной из сторон треугольника и параллелен другой.
Следовательно CN=BN=7 см, NK=0,5*AC=0,5*18=9 см.
P(AKNC)=AK+KN+NC+AC=8+9+7+18=42 см.
ответ: 42 см