Плоскость альфа пересекает стороны угла OА и OD соответственно в точках A и D, плоскости бета эти стороны пересекает соответственно в точках B и C Дано: OB= 9; AB=4, BC= 5; CD= 3 Найти AD и OD
1-a - основание столба, b - верхушка столба (= "фонарь"), c - основание дерева, d - верхушка дерева, e - конец тени. cd=1м, ac = 8ш; ce=4ш⇒ae=12ш. из подобия треугольников abe и cde⇒ ab/cd=ae/ce; ab= 3м 2-треугольник авс - прямоугольный. докажем это с применением теоремы пифагора: 41²=40²+9² 1681=1600+81 значит, ас - гипотенуза. в прямоугольном треугольнике центр окружности находится посередине гипотенузы, следовательно, радиус окружности равен 41: 2=20,5 см. ответ: 20,5 см. 3-1)вс^2=4^2+3^2=25 bc=5 2)bc^2=ac*hb 5^2=x*3 25=3x x=25/3 3)по теореме пифагора ас^2+5^2=(25/3)^2 ac^2=625-225/9 ac^2=400/9 ac=20/3 4-опустим из вершины равнобедренного треугольника высоту, которая по известной теореме является медианой и биссектрисой. тогда из получившихся прямоугольных треугольников найдем, что sin(α/2) = (x/2)/b = x/(2b), где x - это длина искомого основания. теперь выразим икс. x = 2b*sin(α/2). 5-опускаем перпендикуляр bd на сторону ac. проекция ab на ac - это ad= ab cos a; проекция bc на ac - это cd= bc cos c. из теоремы синусов ab/sinc=bc/sina=ac/sin(a+c) ab=ac sinc/sin(a+c) bc=ac sina/sin (a+c) следовательно ad=ac sinc cosa/sin(a+c) cd=ac sina cosc/sin(a+c)
ответ:
1.одна точка - на две части
2.1 точка
3.луч - фигура, имеющая начало из точки, но не имеющая конца. любой буквой обозначается (обычно о)
отрезок - фигура, имеющая начало и конец. любыми двумя буквами.
4.любой отрезок можно разделить на конечное количество отрезков
их длины можно складывать
можно вычитать для выяснения какой отрезок длиннее
5.два отрезка называются равными, если они имеют одинаковую длину, то есть в одинаковых единицах измерения их длины выражаются равными числами.
- отрезок ав
- отрезок сд
ав = сд
6. не знаю.
7.6+2=8
6-2=4
первый отрезок 6 см
второй 2 см
8.не знаю.
9.не дописал(
10.которая делит отрезок на две части
объяснение:
прости)