Продлим стороны AB и CD до пересечения в точке K. В треугольнике AKD сумма углов KAD и KDA равна 90°, следовательно, величина \angle AKD=180 в степени circ минус \angle KAD минус \angle KDA=90 в степени circ. Значит, треугольник AKD — прямоугольный. Рассмотрим треугольник AKD, он прямоугольный, следовательно, центр описанной окружности — середина гипотенузы, то есть точка F. Значит, AF=KF=FD=R= дробь, числитель — AD, знаменатель — 2 .
Рассмотрим треугольники AKF и GKO, угол AKF — общий, углы KGO и KAF равны как соответственные углы при параллельных прямых, следовательно, эти треугольники подобны по двум углам, коэффициент подобия равен дробь, числитель — OK, знаменатель — KF =k. Аналогично, подобны треугольники FKD и OKH, их коэффициент подобия равен дробь, числитель — OK, знаменатель — KF =k. Покажем, что отрезки GO и OH равны: GO=kAF,OH=kFD=kAF=GO. Рассмотрим треугольник GKH, он прямоугольный, аналогично треугольнику AKF точка O — центр описанной окружности треугольника GKH, откуда GO=KO=OH= дробь, числитель — GH, знаменатель — 2 . Аналогично, в треугольнике BKC — BE=KE=EC= дробь, числитель — BC, знаменатель — 2 .
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
30
Объяснение:
Продлим стороны AB и CD до пересечения в точке K. В треугольнике AKD сумма углов KAD и KDA равна 90°, следовательно, величина \angle AKD=180 в степени circ минус \angle KAD минус \angle KDA=90 в степени circ. Значит, треугольник AKD — прямоугольный. Рассмотрим треугольник AKD, он прямоугольный, следовательно, центр описанной окружности — середина гипотенузы, то есть точка F. Значит, AF=KF=FD=R= дробь, числитель — AD, знаменатель — 2 .
Рассмотрим треугольники AKF и GKO, угол AKF — общий, углы KGO и KAF равны как соответственные углы при параллельных прямых, следовательно, эти треугольники подобны по двум углам, коэффициент подобия равен дробь, числитель — OK, знаменатель — KF =k. Аналогично, подобны треугольники FKD и OKH, их коэффициент подобия равен дробь, числитель — OK, знаменатель — KF =k. Покажем, что отрезки GO и OH равны: GO=kAF,OH=kFD=kAF=GO. Рассмотрим треугольник GKH, он прямоугольный, аналогично треугольнику AKF точка O — центр описанной окружности треугольника GKH, откуда GO=KO=OH= дробь, числитель — GH, знаменатель — 2 . Аналогично, в треугольнике BKC — BE=KE=EC= дробь, числитель — BC, знаменатель — 2 .
Получаем: OH=KO=KE плюс EO=EC плюс дробь, числитель — EF, знаменатель — 2 , откуда EC=OH минус дробь, числитель — EF, знаменатель — 2 = дробь, числитель — GH минус EF, знаменатель — 2 . Значит, BC=2EC=GH минус EF=11.
Отрезок GH — средняя линия трапеции, следовательно, GH= дробь, числитель — AD плюс BC, знаменатель — 2 , откуда AD=2GH минус BC=2 умножить на 15 минус 11=GH плюс EF=19.
Основания 11; 19.
Сумма 11+19=30
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см