ответ: боковая поверхность заданной пирамиды равна 120 см².
Решение.
Дана правильная четырехугольная пирамида. в основании ее лежит квадрат. Точка пересечения диагоналей квадрата является центром описанной около квадрата окружности, а радиус ее равен половине диагонали квадрата.
Так как радиус описанной окружности AO = 3√2, то диагональ квадрата AC = 2*3√2 = 6√2.
Найдем сторону квадрата ABCD по т.Пифагора:
AC² = AD² + CD² = 2AD²; (6√2)² = 2AD²; 36*2 = 2AD²; AD² = 36; AD = 6 см.
Сторона квадрата = 6 см. Периметр основания пирамиды P = 4AD = 4*6 = 24 см.
Боковая поверхность пирамиды равна половине произведения периметра основания на апофему.
Треугольник ACB равен треугольнику BCA, по второму признаку равенства треугольников, так как AB = BA, ∠ A = ∠ B, ∠ B = ∠ A. Следовательно, AC = BC. Получаем, что треугольник ABC равнобедренный. Теорема доказана.
ответ: боковая поверхность заданной пирамиды равна 120 см².
Решение.
Дана правильная четырехугольная пирамида. в основании ее лежит квадрат. Точка пересечения диагоналей квадрата является центром описанной около квадрата окружности, а радиус ее равен половине диагонали квадрата.
Так как радиус описанной окружности AO = 3√2, то диагональ квадрата AC = 2*3√2 = 6√2.
Найдем сторону квадрата ABCD по т.Пифагора:
AC² = AD² + CD² = 2AD²; (6√2)² = 2AD²; 36*2 = 2AD²; AD² = 36; AD = 6 см.
Сторона квадрата = 6 см. Периметр основания пирамиды P = 4AD = 4*6 = 24 см.
Боковая поверхность пирамиды равна половине произведения периметра основания на апофему.
Sбок = (1/2) * P * h = 1/2 * 24 * 10 = 120 (см²).
признак равнобедренного треугольника
Если в треугольнике два угла равны, то он равнобедренный.
признак равнобедренного треугольника
Доказательство.
Пусть треугольник ABC такой, что ∠ A = ∠ B. Докажем что он равнобедренный.
доказательство признака равнобедренного треугольника
Треугольник ACB равен треугольнику BCA, по второму признаку равенства треугольников, так как AB = BA, ∠ A = ∠ B, ∠ B = ∠ A. Следовательно, AC = BC. Получаем, что треугольник ABC равнобедренный. Теорема доказана.