Периметр треугольника ABC равен 8 см, периметр треугольника DEF равен 10 см.
Докажи, что периметр шестиугольника PKLMNR меньше 9 см.
1. Рассмотри треугольники PAK, KDL, LBM, MEN, NCR и RFP, напиши для каждого из них неравенство треугольника для сторон, которые также являются сторонами шестиугольника:
PK < PA +
;
KL <
+
;
<
+
;
<
+
;
<
+
;
<
+
.
2. Если сложить левые и правые стороны правильных неравенств, то получится правильное неравенство.
Которые из величин задания получились в левой стороне после сложения?
Периметр треугольника ABC
Удвоенный периметр шестиугольника PKLMNR
Периметр шестиугольника PKLMNR
Удвоенный периметр треугольника ABC
Удвоенный периметр треугольника DEF
Периметр треугольника DEF
3. Если к обеим сторонам правильного неравенства добавить одну и ту же величину, то получится правильное неравенство.
Добавь к обеим сторонам полученного в предыдущем шаге правильного неравенства PK+KL+LM+MN+NR+RP.
Которые из величин задания получились в левой стороне после сложения?
Удвоенный периметр треугольника ABC
Удвоенный периметр шестиугольника PKLMNR
Периметр треугольника DEF
Периметр треугольника ABC
Удвоенный периметр треугольника DEF
Периметр шестиугольника PKLMNR
4. Которые из величин задания получились в правой стороне после сложения?
Удвоенный периметр треугольника DEF
Периметр треугольника ABC
Удвоенный периметр треугольника ABC
Периметр шестиугольника PKLMNR
Удвоенный периметр шестиугольника PKLMNR
Периметр треугольника DEF
5. Чему равна правая сторона полученного неравенства, если использовать данные числовые значения?
ответ:
.
6. Что необходимо сделать с обеими сторонами полученного неравенства, чтобы доказать, что периметр шестиугольника PKLMNR меньше 9 см?
Невозможно доказать
Добавить 2
Вычитать 2
Умножить на 2
Делить на 2
Диагонали прямоугольника равны между собой.
При пересечении диагоналей образуются равнобедренные треугольники.
Рассмотрим один из них, вершина которого составляет 120 градусов.
Находим углы при основании этого треугольника: (180 -120) :2 = 30градусов
угол 30 гр лежит против меньшей стороны прямоугольника, принимаем меньшую сторону пр-ка за Х.
Теперь рассмотрим треугольник, образованный одной диагональю.
Он -прямоугольный, в котором меньший катет лежит против угла в 30 гр.и равен Х, следовательно гипотенуза(диагональ) = 2Х
2Х+Х = 36 (по условию)
3Х = 36
Х = 12
2Х = 24
ответ: 24 см - диагональ прямоугольника.
Для точки R все так же просто. RM пересекает продолжение А1В1 в точке Е, и легко найти что ВЕ = а; (из подобия RMB и B1EM); MB1 = 2a/3; отсюда ME = a√13/3; и высота В1МЕ равна a*(2a/3)/(a√13/3) = 2a/√13;
Для точки Q этим же легко найти ответ 2a/√10; я покажу, как это находится с векторно-координатного метода.
Любая прямая полностью задается вектором вдоль неё и одной точкой, через которую она проходит.
С другой стороны, расстояние между не параллельными прямыми равно расстоянию между параллельными плоскостями, каждая из которых содержит одну из этих прямых (такая пара плоскостей всегда есть и всегда только одна, если прямые не параллельны и не пересекаются).
Плоскость задается однозначно точкой, через которую она проходит и нормальным вектором (то есть вектором, перпендикулярным плоскости). Если плоскости параллельны, у них - очевидно - один и тот же нормальный вектор. Поэтому задача стоит такая - надо найти вектор, перпендикулярный направляющим векторам обеих прямых. Такой вектор отлично известен - это векторное произведение направляющих векторов.
Таким образом, нормальный вектор обеих параллельных плоскостей строится так - берутся две точки на одной прямой и на другой, строятся два вектора вдоль прямых, находится их векторное произведение и нормируется (то есть делится на свой модуль). Получился единичный вектор, перпендикулярный обеим прямым - и обеим плоскостям, содержащим скрещивающиеся прямые. Теперь, чтобы найти расстояние между двумя этими плоскостями, достаточно взять любые две точки на разных плоскостях, построить вектор с началом в одной точке и концом в другой, и скалярно умножить на построенный единичный вектор (то есть найти проекцию отрезка, соединяющего две произвольные точки двух параллельных плоскостей на прямую, перпендикулярную обеим плоскостям).
Выполнение этой программы действий для прямых В1С1 и PQ выглядит так.
B1C1 = (2a,0,0); QP = (4a/3,a,a/3);
векторное произведение B1C1XQP = (0,-1,3)*(2a^2/3); (я вынес общий множитель за скобки, так как для вычисления единичного вектора n = B1C1XQP/IB1C1XQPI его можно просто отбросить.
n = (0, -1/√10, 3/√10);
теперь можно взять любой (еще раз - любой в смысле любой) вектор с началом на одной плоскости и концом на другой и скалярно умножить на n, получится ответ (знак при этом не имеет значения, нужна абсолютная величина).
PB1 = (2a, 0, -2a/3); откуда сразу ответ 2a/√10;