Угол между диагоналями параллелограмма равен 60-это острый,а тупой угол между диагоналями параллелограмма равен 120 т.к. диагонали,точкой параллелограмма точкой пересечения делятся по палам,то ВО=ОД=7 АО=ОС=10 Рассомтрим треугольник АВО в нем нам известно 2 стороны и угол между ними,можем найти АВ-3 сторону,по теореме косинусов (косинус 60=1/2) АВ^2=ВО^2+АО^2-2*АО*ВО*косинус 60 АВ^=2корня из 19АВ=СД=2корня из 19Рассмотрим треугольник АОД,нам известно АО=10,ДО=7,косинус угла между ними 120,считаем все так же по теореме косинусов,но перед этим заменим косинус 120=косинус(180-60)=косинус 60=1/2 АД=2 корня из 19=ВСР=8корней из 19
Плоскость сечения проходит через точки А и С, следовательно, эти точки лежат на прямой, принадлежащей плоскости. Соединяем точки А и С. Имеем линию АС - линию пересечения грани АВСD параллелепипеда плоскостью сечения. Точка М лежит на ребре А1О1, то есть она принадлежит граням АА1D1D и А1В1С1D1 . Соединяем точки А и М - они обе принадлежат грани АА1D1D. АМ - линия пересечения грани AA1D1D параллелепипеда плоскостью сечения. Через точку М проводим прямую МК параллельно прямой АС (так как грани АВСD и A1B1C1D1 параллельны, а две параллельные плоскости пересекаются третьей плоскостью по параллельным прямым. Получаем на ребре С1D1 точку К, которую соединяем с точкой С. Таким образом получаем линию пересечения грани DD1C1C секущей плоскостью. ответ: трапеция АМКС - искомое сечение.
т.к. диагонали,точкой параллелограмма точкой пересечения делятся по палам,то ВО=ОД=7
АО=ОС=10
Рассомтрим треугольник АВО
в нем нам известно 2 стороны и угол между ними,можем найти АВ-3 сторону,по теореме косинусов (косинус 60=1/2)
АВ^2=ВО^2+АО^2-2*АО*ВО*косинус 60
АВ^=2корня из 19АВ=СД=2корня из 19Рассмотрим треугольник АОД,нам известно АО=10,ДО=7,косинус угла между ними 120,считаем все так же по теореме косинусов,но перед этим заменим косинус 120=косинус(180-60)=косинус 60=1/2
АД=2 корня из 19=ВСР=8корней из 19
параллельны, а две параллельные плоскости пересекаются третьей плоскостью по параллельным прямым. Получаем на ребре С1D1 точку К, которую соединяем с точкой С. Таким образом получаем линию пересечения грани DD1C1C секущей плоскостью.
ответ: трапеция АМКС - искомое сечение.