1. Пусть х - угол при основании, тогда х+96 - угол при вершине, лежащей против основания. Углы при основании равнобедренного треугольника равны. Сумма углов треугольника равна 180°.
х + х + х+96 = 180
3х = 180 - 96
3х = 84
х = 28
ответ: 28°
2. Пусть k - коэффициент пропорциональности, тогда:
6k + 2k + 7k = 180
15k = 180
k = 12
∠А = 6k = 6 * 12 = 72°
∠В = 2k = 2 * 12 = 24°
∠М = 7k = 7 * 12 = 84°
3. Треугольник DEF - равнобедренный (так как FE=DE), ∠DEF - это угол, лежащий против основания, тогда:
В основании пирамиды лежит правильный треугольник ABC со стороной равной 6см.
S(осн.)= =9√3 см².
Высота правильной пирамиды падает в центр основания. Поэтому если DH высота пирамиды, а DM - апофема, то MH - радиус вписанной окружности в правильный треугольник. Т.к. по теореме о 3ёх перпендикулярах HM⊥AC.
=√3 см
В прямоугольном ΔDHM (∠H=90°) найдём гипотенузу DM по теореме Пифагора.
=√147 см
Боковые грани правильной пирамиды это равные треугольники.
1. Пусть х - угол при основании, тогда х+96 - угол при вершине, лежащей против основания. Углы при основании равнобедренного треугольника равны. Сумма углов треугольника равна 180°.
х + х + х+96 = 180
3х = 180 - 96
3х = 84
х = 28
ответ: 28°
2. Пусть k - коэффициент пропорциональности, тогда:
6k + 2k + 7k = 180
15k = 180
k = 12
∠А = 6k = 6 * 12 = 72°
∠В = 2k = 2 * 12 = 24°
∠М = 7k = 7 * 12 = 84°
3. Треугольник DEF - равнобедренный (так как FE=DE), ∠DEF - это угол, лежащий против основания, тогда:
∠EDF = (180 - ∠DEF)/2 = (180 - 27)/2 = 76,5°
В основании пирамиды лежит правильный треугольник ABC со стороной равной 6см.
S(осн.)= =9√3 см².
Высота правильной пирамиды падает в центр основания. Поэтому если DH высота пирамиды, а DM - апофема, то MH - радиус вписанной окружности в правильный треугольник. Т.к. по теореме о 3ёх перпендикулярах HM⊥AC.
=√3 см
В прямоугольном ΔDHM (∠H=90°) найдём гипотенузу DM по теореме Пифагора.
=√147 см
Боковые грани правильной пирамиды это равные треугольники.
S(бок.)= =9√147 см²
S(полн.) = S(осн.)+S(бок.) = 9√3 + 9√147 см²
ответ: 9√3 + 9√147 см².