Отрезок ab имеет с плоскостью a единственную общую точку a. точка c делит его в отношении 3: 1, считая от точки a. через точки c и b проведены параллейные прямые, пересекающие плоскость a соотвественно в точках c1 и b1. длинна отрезка ac1 равна 16см. найдите длину отрезка ab1
Приклад 1. З вершини квадрата АВСD проведено перпендикуляр АК до площини квадрата. Знайти площу квадрата, якщо КD = 5 см; КС = 13 см.Розв’язання (мал. 416). 1) АК АВС; КD - похила; АDБ - її проекція. Оскільки АD DС, то за теоремою про три перпендикуляри маємо КD DС.3) Тоді площа квадрата S = 82 = 64 (см2).
Приклад 2. Сторони трикутника довжиною 4 см, 13 см і 15 см. Через вершину найбільшого кута до площини трикутника проведено перпендикуляр і з його кінця, що не належить трикутнику, проведено перпендикуляр завдовжки 4 см до протилежної сторони цього кута. Знайти довжину перпендикуляра, проведеного до площини трикутника.Розв’язання. 1) У ∆АВС: АВ = 4 см; ВС = 13 см; АС = 15 см. Оскільки АС - найбільша сторона трикутника, то АВС - найбільший кут трикутника. ВК АВС (мал. 417).2) КМ АС, тоді за теоремою про три перпендикуляри: ВМ АС, тобто ВМ - висота ∆АВС. За умовою: КМ = 4см.3) Знайдемо площу трикутника АВС за формулою Герона.4) 3 іншого боку
Соединим вершину С с точкой Н. АВСН -параллелограмм, так как сторона АН параллельна и равна противоположной стороне AD.
Но тогда ABCH - ромб и СН=АВ=НD.
Треугольники АВН и НСD равны по двум сторонам и углу между ними (<A и <CHD - соответственные при параллельных АВ и СН и секущей АD) и <D=<A.
Значит треугольник НСD - равносторонний, так как угол при вершине Н равнобедренного треугольника DHC (СН=НD) равен углу D при основании. Тогда <HCD=60°.
Но <ACH=(1/2)*<A=30° (ABCH - ромб).
Значит <ACD=<ACH+<HCD = 30°+60°=90°.
ответ: <ACD=90°.