Основою прямого паралелепіпеда є ромб зі стороною 3 см і кутом 60°. Менша діагональ паралелепіпеда нахилена до площини основи під кутом 45°. Знайдіть об'єм паралелепіпеда
Каноническое уравнение параболы y^2=2px Фокус параболы F(p/2,0), тогда F(5/2,0) Вершина параболы О(0,0) Пусть М(х,у) - искомая точка. Расстояние от нее до начала координат : √(x²+y²) Расстояние до фокуса:√((x-5/2)²+y²). Эти расстояния относятся как 8:7, а квадраты расстояний как 64:49. 49(x^²+y²)=64 ((x-5/2)²+y²). М принадлежит параболе и значит y^2=10x 49(x²+10х)=64 ((x-5/2)²+10х) 49х²+490х=64х²-320х+400+640х 15х²-170х+400=0 3х²-34х+80=0 D=1156-960=196 x1=(34-14)/6=10/3⇒y²=100/3⇒y1=-10√3/3 U y2=10√3/3 x2=(34+14)/6=8⇒y³=80⇒y3=-4√5 U y4=4√5 х=8 и х=10/3 Получается 4 точки: (10/3;-10√3/3)(10/3;10√3/3);(8;-4√5);(8;4√5)
Фокус параболы F(p/2,0), тогда F(5/2,0)
Вершина параболы О(0,0)
Пусть М(х,у) - искомая точка.
Расстояние от нее до начала координат : √(x²+y²)
Расстояние до фокуса:√((x-5/2)²+y²).
Эти расстояния относятся как 8:7, а квадраты расстояний как 64:49.
49(x^²+y²)=64 ((x-5/2)²+y²).
М принадлежит параболе и значит y^2=10x
49(x²+10х)=64 ((x-5/2)²+10х)
49х²+490х=64х²-320х+400+640х
15х²-170х+400=0
3х²-34х+80=0
D=1156-960=196
x1=(34-14)/6=10/3⇒y²=100/3⇒y1=-10√3/3 U y2=10√3/3
x2=(34+14)/6=8⇒y³=80⇒y3=-4√5 U y4=4√5
х=8 и х=10/3
Получается 4 точки: (10/3;-10√3/3)(10/3;10√3/3);(8;-4√5);(8;4√5)
r = AL - радиус основания;
h = KL - высота
Рисунок во вложения.
Дано:
BD=12 (см)
Угол Д =30градусов
---------------------------------
Найти: S(бок)-?,S(пол)-?
Решение:
Диаметр основания: d=BD*cos30=12*√3/2=6√3 (см)
2. Определяем радиус основания
радиус основания равен половине диаметру основанию
AL=d/2=6√3/2=3√3 (см).
3. Определяем высоту
KL = BD*sin30=12*1/2=6 (см).
4. Определяем площадь боковой поверхности:
S(бок) =2*π*r*h=2*π*3√3*6=36π√3 (см²)
5. И последнее найдём площадь полной поверхности
S(пол)=2*π*r*(r+h)=2π*3√3*(3√3+6)=54π+36π√3 (см²).
6. V=πr²h=π*(3√3)²*6=162π (см³)
ответ: S(бок)=36π√3(см²), S(пол)=56π+36π√3(см)², 162π (см³)