В равнобокой трапеции ABCD высота BH, проведенная из вершины тупого угла к большему основанию, делит его на отрезки, больший из которых HD равен полусумме оснований. То есть
HD = (9+21)/2 = 15. Тогда в прямоугольном треугольнике BHD катет ВН (высота трапеции) по Пифагору равен
S = 120 см².
Объяснение:
В равнобокой трапеции ABCD высота BH, проведенная из вершины тупого угла к большему основанию, делит его на отрезки, больший из которых HD равен полусумме оснований. То есть
HD = (9+21)/2 = 15. Тогда в прямоугольном треугольнике BHD катет ВН (высота трапеции) по Пифагору равен
ВН=√(BD²-HD²) = √(17²-15²) =8см.
Sabcd = (BC+AD)*BH/2 = 15*8 = 120см².