Прежде чем решать задачу вспомним теорию: что такое "Пифагоров треугольник"?
будем говорить о Пифагоровой тройке: Это такие натуральные числа у которых выполняется равенство . т.е. Пифагоров треугольник это треугольник с целочисленными значениями для которых выполняется данное равенство.
Египетский треугольник это частный случай Пифагорова треугольника, т.е. к такому набору дополняется условие что
Пример числа 5,12,13 - Пифагоровы т.к. справедливо что
но они не будут образовывать Египетский треугольник т.к. 5:12:13 ≠ 3:4:5
Теперь перейдем к решению:
1) Найдет все стороны треугольника
По т. Пифагора второй катет:
Измерения треугольника 15,20,25
Этот треугольник Пифагоров т.к. стороны выражены целыми числами и справедливо равенство 15²+20²=25²
Проверим, будет ли такой треугольник Египетским:
Египетский треугольник: Это прямоугольный треугольник с целочисленными сторонами и отношение сторон 3:4:5
Проверим отношение сторон в нашем треугольнике
15:20:25= 3:4:5
Значит такой треугольник Пифагоров и как частный случай Египетский
2) Треугольник с катетами 4,5
найдем гипотенузу
по определению измерение гипотенузы не целочисленное- значит такой треугольник не будет Пифагоровым
Так как по условию, точки М, К, Р середины отрезков АВ, ВД, ВС, то отрезок КМ средняя линия треугольника АВД, КР – средняя линия треугольника ВСД, МР – средняя линия треугольника АВС.
Отрезки средних линий параллельны основаниям треугольников: MK || АД, КР || СД, МР || АС, тогда и плоскость МКР параллельны плоскости АСД, что и требовалось доказать.
Длина средней линии треугольника равна половине длины параллельной стороны, тогда треугольник МКР подобен треугольнику АСД по трем пропорциональным сторонам с коэффициентом подобия К = АД / МК = АД / (АД / 2) = 2.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
что такое "Пифагоров треугольник"?
будем говорить о Пифагоровой тройке: Это такие натуральные числа у которых выполняется равенство .
т.е. Пифагоров треугольник это треугольник с целочисленными значениями для которых выполняется данное равенство.
Египетский треугольник это частный случай Пифагорова треугольника, т.е. к такому набору дополняется условие что
Пример числа 5,12,13 - Пифагоровы т.к. справедливо что
но они не будут образовывать Египетский треугольник
т.к. 5:12:13 ≠ 3:4:5
Теперь перейдем к решению:
1) Найдет все стороны треугольника
По т. Пифагора второй катет:
Измерения треугольника 15,20,25
Этот треугольник Пифагоров т.к. стороны выражены целыми числами и справедливо равенство 15²+20²=25²
Проверим, будет ли такой треугольник Египетским:
Египетский треугольник:
Это прямоугольный треугольник с целочисленными сторонами и отношение сторон 3:4:5
Проверим отношение сторон в нашем треугольнике
15:20:25= 3:4:5
Значит такой треугольник Пифагоров и как частный случай Египетский
2) Треугольник с катетами 4,5
найдем гипотенузу
по определению измерение гипотенузы не целочисленное- значит такой треугольник не будет Пифагоровым
Так как по условию, точки М, К, Р середины отрезков АВ, ВД, ВС, то отрезок КМ средняя линия треугольника АВД, КР – средняя линия треугольника ВСД, МР – средняя линия треугольника АВС.
Отрезки средних линий параллельны основаниям треугольников: MK || АД, КР || СД, МР || АС, тогда и плоскость МКР параллельны плоскости АСД, что и требовалось доказать.
Длина средней линии треугольника равна половине длины параллельной стороны, тогда треугольник МКР подобен треугольнику АСД по трем пропорциональным сторонам с коэффициентом подобия К = АД / МК = АД / (АД / 2) = 2.
Отношение площадей подобных треугольников равно квадрату коэффициента подобия.
Sавс / Sмкр = 48 / Sмкр = 22.
Sмкр = 48 / 4 = 12 см2.
ответ: Площадь треугольника МКР равна 12 см2.