Основанием прямой треугольной призмы ABCA1B1C1 является прямоугольный треугольник ABC с прямым углом C. Диагонали граней AA1B1B и BB1C1C равны (2корня из 41) и 10 соответственно, АВ=10. а) Докажите, что треугольник А1С1В прямоугольный.
б) Найдите объём пирамиды АСС1В1.
Проекция меньшей стороны на большую сторону треугольника равна 1,4 см.
Объяснение:
Предположим, что искомая проекция равна Х (см), тогда соседняя проекция другой стороны на большую сторону равна: 30-Х (см). Выразим по теореме Пифагора высоту, которая проведена к большей стороне треугольника, используя две другие стороны исходного треугольника, получим:
5² - х² = 29² - (30-х)²
25 - х² = 841 - 900 + 60х - х²
60х = 25-841+900
60х = 84
х= 1,4 (см)
ответ: Проекция меньшей стороны на большую сторону треугольника равна 1,4 см.
–––––––––––––––––––––––––––––––––––––––––––––––
Вариант решения.
Опустим высоту из тупого угла.
Высота равнобедренной трапеции, проведенная из вершины тупого угла, делит большее основание на два отрезка, меньший из которых равен полуразности оснований, а больший – полусумме оснований.
Боковая сторона- катет прямоугольного треугольника, образованного основанием, диагональю и боковой стороной трапеции. Обозначим ее х. Меньший отрезок на основании=1. Тогда
х²=10*1=10
х=√10 см