Основание прямоугольного параллелепипеда abcda1b1c1d1 - квадрат, длина стороны которого равна 6 см. вычислите расстояние от вершины а до середины отрезка a1c1, если длина диагонали боковой грани параллелепипеда равна 10 см. полное решение с рисунком.
А1С1 – диагональ квадрата со стороной, равной 6 см
Формула диагонали квадрата d=a√2 ⇒
A1C1=6√2
B1D1=A1C1=6√2
Проведем в боковых гранях диагонали AD1 и АВ1
Боковые ребра параллелепипеда равны, основание – квадрат по условию ⇒
треугольник В1АD1 равнобедренный, т.к. диагонали равных граней равны. Диагонали квадрата равны и точкой пересечения делятся пополам. OB1=OD1=3√2
О - центр А1С1. ⇒
АО - медиана ∆ D1AB1. По т.Пифагора из треугольника АОВ1 найдем длину искомого отрезка
АО=√(AB1*-ОВ1*)=√(100-18)=√82