Сечение, проходящее через DP --это треугольник, в котором одна сторона уже задана, осталось найти третью вершину)) эта точка должна лежать на прямой, параллельной СЕ (сечение должно содержать прямую, параллельную СЕ))) можно, наверное и не достраивать до параллелепипеда, но мне кажется, что так понятнее и лучше видно)) у параллелепипеда есть параллельные грани... DP пересекает плоскость АСЕ в точке пересечения прямых DP и AE в плоскости АСЕ (это диагональное сечение параллелепипеда))) строим параллельную СЕ прямую... или просто: DP пересекаем с АЕ и через точку пересечения проводим параллельно СЕ прямую
2. М = 58, Т - 32
8. 19
14.
20. В = 65, А - 25
26. А = 24, С = 66
Объяснение:
2. Сначала находим часть угла К = 90 - 32 = 58. Затем в нижнем треугольнике: 180 - 90 - 58 = 32. Затем верхний угол: 180 - 90 - 32 = 58
8. Косинус 60 градусов (отношение прилежащего катета к гипотенузе): 1/2. Значит, 1/2 = х/38⇒ х = 19
14. Нет вопроса. Непонятно, что надо найти.
20. На рисунке показано, что отрезок СС1 делит угол пополам, значит, каждый из них равен 90/2=45. Угол В = 180 - 70 - 45 = 65. Угол А = 180 - 65 - 90 = 25
26. Плохо видно рисунок. Примем отрезок ВК за биссектрису. 21 - градусная мера угла между биссектрисой и высотой. Определим углы, которые образует биссектриса на стороне АС. Угол KLB = 90, угол LBK = 21, значит угол BKL = 180 - 21 -90 = 69, а угол BKA = 180 - 69 = 111.
Отсюда угол А = 180 - 45 - 111 = 24, а угол С = 180 - 24 -90 = 66
эта точка должна лежать на прямой, параллельной СЕ (сечение должно содержать прямую, параллельную СЕ)))
можно, наверное и не достраивать до параллелепипеда, но мне кажется, что так понятнее и лучше видно)) у параллелепипеда есть параллельные грани...
DP пересекает плоскость АСЕ в точке пересечения прямых DP и AE
в плоскости АСЕ (это диагональное сечение параллелепипеда)))
строим параллельную СЕ прямую...
или просто: DP пересекаем с АЕ и через точку пересечения проводим параллельно СЕ прямую