Дано: ABCD ромб ; BD =30 ; AC =40 ; AK ⊥ (ABCD) ; AK= 10 .
d( K , CD) = d( K , BC) - ?
Проведем из вершины A высоту ромба : AH ⊥ CD (AH = h) и соединим точка H с точкой K . KH -наклонная , AH ее проекция на плоскости ABCD. По теореме трех перпендикуляров CD ⊥ KH ,т.е. KH есть расстояние от точки K до стороны CD . Из ΔKAH : KH = √(KA² +AH²).
Сторона ромба равно a =√ ( (BD/2)² +(AC/2)² ) = (1/2)*√ ( BD² +AC)² = (1/2)*√ ( 30² +40)² =(1/2)*50=25. S(ABCD) =BD*AC/2 = 30*40/2 = 600. C другой стороны S(ABCD) =a*AH ⇒ 600 =25*AH ⇒AH =24. Окончательно : KH = √(KA² +AH²) = √(10²+24)² =√(100+576) =√676=26.
По свойствам параллелограмма, сумма углов, прилежащих к одной стороне, равна 180°.
В задаче сумма двух углов равна 226°. Значит эти углы не могут прилежать к одной стороне,а являются противоположными.
В параллелограмме противоположные углы равны.
Следовательно,эти два угла равны,а их сумма составляет 226°,значит один угол равен 226° : 2 = 113°
Соседние с ними углы раны : 180° -113°= 67°(сумма углов,прилежащих к одной стороне параллелограмма (соседних),равна 180°.
Наибольший угол параллелограмма равен 113°.
d( K , CD) = d( K , BC) - ?
Проведем из вершины A высоту ромба : AH ⊥ CD (AH = h) и соединим точка H с точкой K . KH -наклонная , AH ее проекция на плоскости ABCD.
По теореме трех перпендикуляров CD ⊥ KH ,т.е. KH есть расстояние от точки K до стороны CD .
Из ΔKAH : KH = √(KA² +AH²).
Сторона ромба равно a =√ ( (BD/2)² +(AC/2)² ) = (1/2)*√ ( BD² +AC)² =
(1/2)*√ ( 30² +40)² =(1/2)*50=25.
S(ABCD) =BD*AC/2 = 30*40/2 = 600. C другой стороны S(ABCD) =a*AH ⇒
600 =25*AH ⇒AH =24.
Окончательно :
KH = √(KA² +AH²) = √(10²+24)² =√(100+576) =√676=26.
ответ : 26.