Уравнение окружности: x2+y2=72. Уравнение прямой: x+y+c=0. Найди значения коэффициента c, с которым прямая и окружность имеет одну общую точку (прямая касается окружности).
Объяснение:
x²+y²=72, x+y+c=0
у=-(х+с). Подставим в уравнение окружности .
x²+(-(х+с))²=72 , х²+х²+2сх+с²-72=0 , 2х²+2хс+(с²-72)=0. Это уравнение должно иметь одно решение ( прямая и окружность имеет одну общую точку ), значит Д=0
Уравнение окружности: x2+y2=72. Уравнение прямой: x+y+c=0. Найди значения коэффициента c, с которым прямая и окружность имеет одну общую точку (прямая касается окружности).
Объяснение:
x²+y²=72, x+y+c=0
у=-(х+с). Подставим в уравнение окружности .
x²+(-(х+с))²=72 , х²+х²+2сх+с²-72=0 , 2х²+2хс+(с²-72)=0. Это уравнение должно иметь одно решение ( прямая и окружность имеет одну общую точку ), значит Д=0
Д=(2с)²-4*2*(с²-72)=4с²-8с²+8*72=-4с²+8*72,
-4с²+8*72=0 , -4с²=8*72, с²=2*72, с²=144 , с=±12
ответ . -12; 12
Объяснение:
7)
<АВС=180°-<А*2=180°-30°=150°
Н=АВ/2=2/2=1 ед высота треугольника опущенная на ВС.
S=1/2*BC*H=1/2*2*1=1ед²
ответ: 1ед²
13)
S=MN²√3/4=4²√3/4=4√3 ед²
ответ: 4√3 ед².
14)
ВС=Р/3=6/3=2 ед сторона треугольника.
S=BC²√3/4=2²√3/4=√3 ед²
ответ: √3 ед²
15)
АВС- равносторонний треугольник.
S=AC²√3/4=8²√3/4=64√3/4=16√3 ед²
ответ: 16√3 ед²
19)
<В=180°-2*75°=30°
S=1/2*BC²*sin<B=1/2*2²*1/2=1ед²
ответ: 1ед²
20)
∆АВС- равносторонний.
S=a²√3/4 ед²
ответ: а²√3/4 ед²
21)
По формуле Герона.
р=(2*LM+KM)/2=50/2=25
S=√(25(25-13)(25-13)(25-24)=√(25*12*12*1)=
=5*12=60ед²
ответ: 60ед²