Около Правильного четырёхугольника со стороной а описана окружность Докажите что сумма кыадрата расстояний от произвольной точки окружности до вершины четырехугольника является величеной постоянной найдите ее
abcd - трапеция; ad - нижнее основание; bc - верхнее основание; o - точка пересечения диагоналей. ef проходит через точку o и параллельно основаниям. mn проходит через точку o и перпендикулярно основаниям - высота трапеции. e∈ab; f∈cd; m∈bc; n∈ad
тр-к boc подобен тр-ку aod. отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. значит, ad: bc=3^: 1; mo: on=1: 3; mo: mn=1: 4;
пусть bc=x⇒ad=3x; mo=y; ⇒on=3y; mn=4y
площадь трапеции abcd равна: s=1/2(ad+bc)*mo=1/2(x+3x)*4y=8xy
выразим через s площади befc и aefd.
площадь aefd равна сумме площадей aofd и aeo.
рассмотрим тр-ки acd и ocf. они подобны. их высоты относятся как 4: 1, а площади как 16: 1. площадь acd равна 1/2*3x*4y=6xy. площадь ocf равна 1/16*6xy=3/8*xy. площадь aofd равна разности площадей acd и ocf:
6xy-3/8*xy=45/8*xy
рассмотрим тр-ки abc и aeo. они подобны. их высоты относятся как 4: 3, а площади как 16: 9. площадь abc равна 1/2*x*4y=2xy. площадь aeo равна 9/16*2xy=9/8*xy. площадь aefd равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy
При пересечении двух прямых образуется по два смежных угла и по два вертикальных угла. Сумма двух смежных углов равна 180 градусов. Вертикальные углы равны между собой. С условия задачи известна градусная мера двух углов, которые образовались при пересечении двух прямых, то есть — это сумма двух вертикальных углов. ответим на вопрос задачи.
1). Найдем углы, образованные при пересечении двух прямых.
(360 - 104) / 2 = 256 / 2 = 128 градусов.
ответ: При пересечении двух прямых, образовалось 4 угла, градусная мера которых равна 52, 52, 128, 128 градусов
abcd - трапеция; ad - нижнее основание; bc - верхнее основание; o - точка пересечения диагоналей. ef проходит через точку o и параллельно основаниям. mn проходит через точку o и перпендикулярно основаниям - высота трапеции. e∈ab; f∈cd; m∈bc; n∈ad
тр-к boc подобен тр-ку aod. отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. значит, ad: bc=3^: 1; mo: on=1: 3; mo: mn=1: 4;
пусть bc=x⇒ad=3x; mo=y; ⇒on=3y; mn=4y
площадь трапеции abcd равна: s=1/2(ad+bc)*mo=1/2(x+3x)*4y=8xy
выразим через s площади befc и aefd.
площадь aefd равна сумме площадей aofd и aeo.
рассмотрим тр-ки acd и ocf. они подобны. их высоты относятся как 4: 1, а площади как 16: 1. площадь acd равна 1/2*3x*4y=6xy. площадь ocf равна 1/16*6xy=3/8*xy. площадь aofd равна разности площадей acd и ocf:
6xy-3/8*xy=45/8*xy
рассмотрим тр-ки abc и aeo. они подобны. их высоты относятся как 4: 3, а площади как 16: 9. площадь abc равна 1/2*x*4y=2xy. площадь aeo равна 9/16*2xy=9/8*xy. площадь aefd равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy
площадь befc равна разности площадей abcd и aefd:
8xy-27/4*xy=5/4*xy
s(befc): s(aefd)=5/4*xy: 27/4*xy=5: 27
При пересечении двух прямых образуется по два смежных угла и по два вертикальных угла. Сумма двух смежных углов равна 180 градусов. Вертикальные углы равны между собой. С условия задачи известна градусная мера двух углов, которые образовались при пересечении двух прямых, то есть — это сумма двух вертикальных углов. ответим на вопрос задачи.
1). Найдем углы, образованные при пересечении двух прямых.
(360 - 104) / 2 = 256 / 2 = 128 градусов.
ответ: При пересечении двух прямых, образовалось 4 угла, градусная мера которых равна 52, 52, 128, 128 градусов