Объяснение:
23 целых 5 десятых
23 целых 5
АВ = ВС = АС = 4; ∠А = ∠В = ∠С =60°.
По теореме синусов найдём ∠АВМ.
АМ : sin ∠АВМ = 2√3 : sin 60°
(4:2) : sin ∠АВМ = 2√3 : √3/2
sin ∠АВМ = 1/2,
следовательно, ∠АВМ = 30°.
В Δ АВМ ∠АМВ = 180 - 60 - 30 = 90 °; следовательно треугольник АВМ является прямоугольным, а катет АМ, лежащий против угла 30°, равен 1/2 АВ, откуда АВ = 2 · 2 = 4.
По теореме Пифагора находим ВС = 4
ВС = √(2² + (2√3)² = √16 = 4.
В равностороннем треугольнике все углы равны 60°.
ответ: АВ = ВС = АС = 4; ∠А = ∠В = ∠С =60°.
Объяснение:
23 целых 5 десятых
23 целых 5
23 целых 5 десятых
23 целых 5 десятых
23 целых 5 десятых
23 целых 5
23 целых 5 десятых
23 целых 5 десятых
23 целых 5 десятых
23 целых 5
23 целых 5 десятых
23 целых 5 десятых
23 целых 5 десятых
23 целых 5
23 целых 5 десятых
23 целых 5 десятых
23 целых 5 десятых
23 целых 5
23 целых 5 десятых
23 целых 5 десятых
23 целых 5 десятых
23 целых 5
23 целых 5 десятых
23 целых 5 десятых
23 целых 5 десятых
23 целых 5
23 целых 5 десятых
23 целых 5 десятых
23 целых 5 десятых
23 целых 5
23 целых 5 десятых
23 целых 5 десятых
23 целых 5 десятых
23 целых 5 десятых
23 целых 5
23 целых 5 десятых
23 целых 5 десятых
23 целых 5
23 целых 5 десятых
23 целых 5 десятых
23 целых 5 десятых
23 целых 5
23 целых 5 десятых
23 целых 5 десятых
АВ = ВС = АС = 4; ∠А = ∠В = ∠С =60°.
Объяснение:
По теореме синусов найдём ∠АВМ.
АМ : sin ∠АВМ = 2√3 : sin 60°
(4:2) : sin ∠АВМ = 2√3 : √3/2
sin ∠АВМ = 1/2,
следовательно, ∠АВМ = 30°.
В Δ АВМ ∠АМВ = 180 - 60 - 30 = 90 °; следовательно треугольник АВМ является прямоугольным, а катет АМ, лежащий против угла 30°, равен 1/2 АВ, откуда АВ = 2 · 2 = 4.
По теореме Пифагора находим ВС = 4
ВС = √(2² + (2√3)² = √16 = 4.
В равностороннем треугольнике все углы равны 60°.
ответ: АВ = ВС = АС = 4; ∠А = ∠В = ∠С =60°.