Одна сторона параллелограмма равна 15, а высота, опущенная на эту сторону, равна 18. Найди площадь параллелограмма методом деления на части. ответ: Проверить
1. Если две плоскости имеют общую точку, то они имеют общую прямую. 2. Две плоскости не параллельны, если имеют общую прямую (пересекаются). 3. Если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в этой плоскости, то она параллельна данной плоскости. 4. Если две пересекающиеся прямые одной плоскости параллельны двум прямым другой плоскости, то эти вторые прямые являются пересекающимися. 5. Через точку, не принадлежащую данной плоскости, проходит единственная плоскость параллельная данной плоскости.
Диагонали ромба в точке пересечения делятся пополам и образуют 4 равных прямоугольных треугольника(половинки диагоналей это катеты, а сторона ромба гипотенуза) , пусть a,b катеты, с гипотенуза Сумма катетов :
Также вспомним теорему Пифагора:
Объединим оба уравнения в систему:
Выразим из второго уравнения а (подстановка)
Подставим в первое уравнение
Это приведенное уравнение, решаем по т.Виета
Подставляем оба найденных корня в подстановку
Как мы видим ответом систем являются пары чисел (15;20) и (20;15) ,не имеет значения в каком порядке расположены числа, мы нашли половины диагоналей.
2. Две плоскости не параллельны, если имеют общую прямую (пересекаются).
3. Если прямая, не лежащая в плоскости, параллельна некоторой прямой, лежащей в этой плоскости, то она параллельна данной плоскости.
4. Если две пересекающиеся прямые одной плоскости параллельны двум прямым другой плоскости, то эти вторые прямые являются пересекающимися.
5. Через точку, не принадлежащую данной плоскости, проходит единственная плоскость параллельная данной плоскости.
Сумма катетов :
Также вспомним теорему Пифагора:
Объединим оба уравнения в систему:
Выразим из второго уравнения а (подстановка)
Подставим в первое уравнение
Это приведенное уравнение, решаем по т.Виета
Подставляем оба найденных корня в подстановку
Как мы видим ответом систем являются пары чисел (15;20) и (20;15) ,не имеет значения в каком порядке расположены числа, мы нашли половины диагоналей.
Площадь ромба можно найти по формуле: