Решение обеих задач основано на том, что у вписанного 4-угольника суммы противоположных углов равны 180°. Кроме того, вписанный угол, опирающийся на диаметр, равен 90°.
1. ∠BAD=∠BCD=90° как опирающиеся на диаметр. ∠ADC= 180-100=80°
2. ∠ABC=∠ADC=90° как опирающиеся на диаметр. 90°=∠ABC=2∠BDC⇒∠BDC=45°⇒∠ADC=90°-45°=45° Про углы∠BAD и ∠BCD ничего сказать нельзя. Чтобы понять это, проводим диаметр AC, рисуем равнобедренный прямоугольный треугольник ABC (B оказывается на окружности), после чего произвольным образом выбираем точку D на окружности по другую сторону от диаметра.
д) Аналогично ∠(OA, OC) = 90°, т.к. угол между диагоналями равен 90°;
е) Векторы AC и BD сонаправлены, значит, угол между ними равен 0°.
ж) Переносим вектор DB параллельным переносом так, чтоб его начало совпадало с точкой А. Тогда ∠(AD, DB) = 135°.
з) Переносом вектор OC параллельны переносом так, чтоб его начплао совпадало с точкой А. Угол между векторами остался таким жеч как и угол между диагоналями, т.е. 90°.
1. ∠BAD=∠BCD=90° как опирающиеся на диаметр.
∠ADC= 180-100=80°
2. ∠ABC=∠ADC=90° как опирающиеся на диаметр.
90°=∠ABC=2∠BDC⇒∠BDC=45°⇒∠ADC=90°-45°=45°
Про углы∠BAD и ∠BCD ничего сказать нельзя. Чтобы понять это, проводим диаметр AC, рисуем равнобедренный прямоугольный треугольник ABC (B оказывается на окружности), после чего произвольным образом выбираем точку D на окружности по другую сторону от диаметра.
б) Переносим параллельным переносом вектор DA так, чтоб его начало было в точке А.
Тогда угол между векторами DA и AB равен 90° + 45° = 135°;
в) ∠(OA, OB) = 90°, т.кю угол между диагоналями квадрата равен 90°;
г) (тут то же самое, что и под буквой в);
д) Аналогично ∠(OA, OC) = 90°, т.к. угол между диагоналями равен 90°;
е) Векторы AC и BD сонаправлены, значит, угол между ними равен 0°.
ж) Переносим вектор DB параллельным переносом так, чтоб его начало совпадало с точкой А.
Тогда ∠(AD, DB) = 135°.
з) Переносом вектор OC параллельны переносом так, чтоб его начплао совпадало с точкой А.
Угол между векторами остался таким жеч как и угол между диагоналями, т.е. 90°.