ACDMA 1 C 1 D 1 M 1 – куб. Точка К ділить ребро MD у відношенні MK : KD = 3 : 2. Побудувати переріз куба площиною, яка проходить через точку К і паралельна до площини BB 1 M 1 . Обчислити площу перерізу, якщо ребро куба дорівнює 7 см.
Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.
Прямая на плоскости - понятие.Прежде чем дать понятие прямой на плоскости, следует четко представлять себе что же представляет собой плоскость. Представление о плоскости позволяет получить, к примеру, ровная поверхность стола или стены дома. Следует, однако, иметь в виду, что размеры стола ограничены, а плоскость простирается и за пределы этих границ в бесконечность (как будто у нас сколь угодно большой стол).Если взять хорошо заточенный карандаш и дотронуться его стержнем до поверхности «стола», то мы получим изображение точки. Так мы получаем представление о точке на плоскости.Теперь можно переходить и к понятию прямой линии на плоскости.Положим на поверхность стола (на плоскость) лист чистой бумаги. Для того чтобы изобразить прямую линию, нам необходимо взять линейку и провести карандашом линию на сколько это позволяют сделать размеры используемой линейки и листа бумаги. Следует отметить, что таким мы получим лишь часть прямой. Прямую линию целиком, простирающуюся в бесконечность, мы можем только вообразить.
Сума внутрішніх кутів чотирикутника дорівнює 360°. Нехай міра меншого кута дорівнює х°, тоді інші кути чотирикутника мають міру 2х°, Зх" та 4х°. Розв'язуємо рівняння х + 2х + Зх + 4х = 360; 10х = 360; х - 36. Отже, кути чотирикутника мають міру 36°, 72", 108° та 144°;
а) Якщо менший кут чотирикутника має міру х°, то, згідно умові, інші кути мають міру 2х", 2х° та 13зг°. Отримуємо рівняння: х + 2х + 2х + 13х = 360; 18х = 360; х = 20. Отже, кути чотирикутника мають міру 20°, 40°, 40° та 260°. Оскільки найбільший кут чотирикутника більший від розгорнутого, то даний чотирикутник — не опуклий.