Решение: из определения равнобедренного Δ-ка, которое гласит, что треугольник называется равнобедренным, если у него две стороны равны( они же называются боковыми( в нашей задаче это равные боковые стороны АВ и ВС), а третья сторона называется основанием( в нашей задаче это АС) следует, что наш Δ- ик- равнобедренный. по определению: внешним углом при данной вершине(в нашей задаче при вершине А) называется угол, смежный с внутренним углом Δ-ка при этой вершине. по теореме 2.1( в учебнике Погорелова): сумма смежных углов равна 180°.То есть внешний угол при вершине А, равный 167°( по условию задачи)+ внутренний смежный ему угол при этой же вершине А= 180°. Отсюда следует, что внутренний угол при вершине А= 180°-167°, то есть равен 13°. По теореме 3.3 в учебнике по геометрии Погорелова: В равнобедренном треугольнике углы при основании равны. А это значит, что внутренние углы( угол А и угол С) при основании АС равны. Мы уже нашла угол А, он равен 13°. Значит и угол С равен 13°.
Дано:
∆АВС - прямоугольный.
ВЕ - биссектриса.
∠А = 30°
ВЕ = 6 см
Найти:
∠ВЕА; СЕ; АС
Решение.
Сумма углов прямоугольного треугольника равна 90°
=> ∠В = 90 - 30 = 60°
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> ВС = 1/2АВ
∠ЕВА = ∠ЕВС = 60 ÷ 2 = 30° (т.к. ВЕ - биссектриса)
Если угол прямоугольного треугольника равен 30°, то напротив лежащий катет равен половине гипотенузы.
=> СЕ = 1/2ВЕ = 6 ÷ 2 = 3 см.
Сумма острых углов прямоугольного треугольника равна 90°
=> ∠ВЕС = 90 - 30 = 60°
СУММА СМЕЖНЫХ УГЛОВ РАВНА 180°
=> ∠ВЕА = 180 - 60 = 120°
∠В = ∠А = 30°
=> ∆АЕВ - равнобедренный.
=> ЕВ = ЕА = 6 см, по свойству равнобедренного треугольника.
СА = 3 + 6 = 9 см
ответ: 120°; 9 см; 3 см.