Если исходный прямоугольник - не квадрат, то ответ:
некоторый четырехугольник является параллелограммом, конкретно - ромбом.
Разделив прямоугольник диагоналями , получим треугольники с равными основаниями, т.к. диагонали прямоугольника равны. Средние линии этих прямоугольников равны между собой и параллельны попарно.
Диагонали получившегося четырехугольника равны сторонам исходного прямоугольника, следовательно, перпендикулярны друг другу, но не равны между собой.
Четырехугольник, у которого стороны равны и попарно параллельны, а диагонали взаимно перпендикулярны, является ромбом.
Если исходный прямоугольник - не квадрат, то ответ:
некоторый четырехугольник является параллелограммом, конкретно - ромбом.
Разделив прямоугольник диагоналями , получим треугольники с равными основаниями, т.к. диагонали прямоугольника равны. Средние линии этих прямоугольников равны между собой и параллельны попарно.
Диагонали получившегося четырехугольника равны сторонам исходного прямоугольника, следовательно, перпендикулярны друг другу, но не равны между собой.
Четырехугольник, у которого стороны равны и попарно параллельны, а диагонали взаимно перпендикулярны, является ромбом.
Принимаем следующие обозначения:
S1 - площадь осевого сечения цилиндра;
S2 - площадь верхнего основания цилиндра (она также равна нижнего основания цилиндра);
S3 - площадь боковой поверхности цилиндра;
S - площадь всей поверхности цилиндра;
Р - длина окружности верхней грани цилиндра;
R - радиус основания цилиндра;
D - диаметр основания цилиндра.
S=2*S2+S3 общая площадь поверхности равняется сумме двух оснований с площадью боковой поверхности
S1=h*D площадь осевого сечения цилиндра равняется произведению высоты цилиндра на его диаметр основания
D=S1/h=240/20=12 cм
R=D/2=12/2=6 см
см2
см
S3=P*h=37.68*20=753.6 см2
S=2*S2+S3=2*113.04+753.6=979.68 cм2