Пусть в ромбе ABCD диагональ AC равна стороне ромба. Тогда треугольники ABC и ADC являются равносторонними, значит, углы B и D равны 60 градусам. Тогда углы A и C равны 180-60=120 градусам - в ромбе сумма соседних углов равна 180 градусам. Пусть O - точка пересечения диагоналей ромба. Рассмотрим треугольник ABO. В нём AO=5, так как точка пересечения диагоналей делит их пополам, а AB=10. Диагонали ромба пересекаются по прямым углом, значит, треугольник является прямоугольным. Найдём его катет BO, зная гипотенузу и второй катет - BO=√10²-5²=5√3. BO=DO, тогда диагональ BD равна 2*5√3=10√3см.
Отношением двух отрезков называется отношение тех чисел, которые выражают длины этих отрезков при условии, что отрезки измерены единицами одного наименования.
В арифметике отношением одного числа к другому называется частное от деления первого числа на второе, поэтому можно сказать, что отношением одного отрезка к другому является частное от деления длины первого отрезка на длину второго, если длины отрезков выражены в единицах одного наименования.
Если даны два отрезка АВ = 6 см и СD = 4 см, то отношение отрезка АВ к отрезку СD равно АВ/СД=6/4=1,5. В этом случае делимое (АВ) называется предыдущим членом отношения, делитель (СD) — последующим членом отношения, а частное (1,5) — отношением.
В арифметике отношением одного числа к другому называется частное от деления первого числа на второе, поэтому можно сказать, что отношением одного отрезка к другому является частное от деления длины первого отрезка на длину второго, если длины отрезков выражены в единицах одного наименования.
Если даны два отрезка АВ = 6 см и СD = 4 см, то отношение отрезка АВ к отрезку СD равно АВ/СД=6/4=1,5.
В этом случае делимое (АВ) называется предыдущим членом отношения,
делитель (СD) — последующим членом отношения, а частное (1,5) — отношением.