Основание прямой призмы -правильный треугольник, радиус описанной окружности которого равен 2√3. Найдите боковую поверхность и объем призмы, если ее высота равна 4.
2) Найдите объем прямоугольного параллелепипеда, площади боковых граней которого равны 6см2,2 см2,3см2.
центр вписанной окружности (он же - основание высоты пирамиды) и точка пересечения диагоналей основания. Нужно теперь доказать, что эти точки не совпадают. По условию, основанием является равнобокая трапеция. Высота этой трапеции - это диаметр вписанной окружности, отсюда можно заключить, что центр вписанной окружности, находится на одинаковом расстоянии от оснований трапеции. Для точки пересечения диагоналей этого сказать нельзя. Пусть ABCD - это данная равнобокая трапеция, являющаяся основанием данной в условии пирамиды. Причем AD - большее основание, BC - меньшее основание трапеции. Пусть т. F - точка пересечения диагоналей. Проведя диагонали трапеции AC и BD. Найдем, что треугольники AFD и CFB подобны по двум углам (накрест лежащие углы при параллельных прямых AD и BC и секущих BD и AC равны). Но коэффициент подобия этих треугольников не равен 1 (k = AD/BC, но AD>BC, поэтому AD/BC>1), то есть эти треугольники не равны, а значит неравны и их высоты, проведенные из т. F, что означает, что т. F не равноудалена от оснований трапеции, в отличии о центра вписанной в трапецию окружности. ЧТД.
Острый угол при другом основании равен 135 - 90 = 45 градусов. Следовательно, боковая сторона, равная по условию 23 корня из 2, является гипотенузой равнобедренного прямоугольного треугольника, катеты которого равны между собой и равны высоте данной трапеции.
Квадрат гипотенузы равен 23*23*2 = 1058, квадрат катета 1058/2 = 529, катет равен 23.
Итак, высота 23, основания 6 и 10. Ищем площадь: 23(6+10)\2 = 184
ответ: 184