Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).
Периметр ромба равен 8 м.
Объяснение:
В ромбе диагонали взаимно перпендикулярны и являются биссектрисами углов. Следовательно ∠KEL = ∠EKL.
∠EOA = ∠EKL (дано). =>
∠KEL = ∠EAO => треугольник EOA равнобедренный.
Кроме того, АВ║LK║EF (так ∠EOA = ∠EKL соответствкнные углы при АВ и LK и секущей ЕК).
Значит ЕА = АО =1м.
АО = ОВ (так как точка О - точка пересечения диагоналей ромба).
AEFB - параллелограмм (так как АВ║EF и EA║FB). =>
EF =AB = 2·AO = 2 м.
Итак, сторона ромба равна 2м, тогда его периметр равен 8м (стороны ромба равны).
О - точка пересечения диагоналей.
Тогда АО = СО = 1/2 АС = 5,
ВО = МО = 1/2 ВМ = 8,
прямоугольный треугольник АОВ имеет гипотенузу
АВ = корень(5^2 + 8^2) = корень(89).
И так, сторона ромба корень(89).
По теореме косинусов находим косинус угла
противолежащего основанию в равнобедренном
треугольнике:
АВС
АС^2 = AB^2 + BC^2 - 2AB*BC*cos(ABC)
cos(ABC) = (AB^2 + BC^2 - АС^2) / 2AB*BC
cos(ABC) = (89 + 89 - 100) / (2*89)
cos(ABC) = 39/89.
Аналогично для треугольника АВМ
cos(BAM) = (89 + 89 - 256) / (2*89)
cos(BAM) = -39/89.
ответ: arccos(39/89), arccos(-39/89)