Дано:
∠AOB и ∠BOC - смежные
∠AOB = ∠BOC + 44°
Найти:
∠AOB - ?
∠BOC - ?
Пусть ∠AOB = (x)°, тогда ∠BOC = (x - 44)°. Сумма смежных углов всегда равна 180°.
Составим и решим уравнение:
x + x - 44 = 180;
2x = 180 + 44;
2x = 224;
x = 224 ÷ 2;
x = 112 ⇒∠AOB = 112°.
Угол ∠BOC можем найти двумя .
(1) Либо подставим найденное значение х в уравнение ∠BOC = (x - 44)°:
∠BOC = (112 - 44)° = 68°.
(2) Либо воспользуемся тем, что сумма смежных углов равна 180°:
∠AOB + ∠BOC = 180° ⇒
⇒ ∠BOC = 180° - ∠AOB = 180° - 112° = 68°.
ответ: ∠AOB = 112°, ∠BOC = 68°.
Удачи Вам! :)
1. После построения MN получается треугольник MNE, подобный треугольнику CDE по первому признаку подобия (угол Е - общий, углы С и NME равны как соответственные углы при пересечении двух параллельных прямых CD и MN секущей СЕ). Поскольку треугольники подобны, то <MNE = <CDE = 68°2. Зная, что развернутый угол равен 180°, находим угол DNM:<DNM = 180 - <MNE = 180 - 68 = 112°3. Поскольку DM - биссектриса, то угол MDN = <CDE : 2 = 68 : 2 = 34°4. Зная два угла треугольника DMN, находим неизвестный угол:<DMN = 180 - <MDN - <DNM = 180 - 34 - 112 = 34°
Дано:
∠AOB и ∠BOC - смежные
∠AOB = ∠BOC + 44°
Найти:
∠AOB - ?
∠BOC - ?
Пусть ∠AOB = (x)°, тогда ∠BOC = (x - 44)°. Сумма смежных углов всегда равна 180°.
Составим и решим уравнение:
x + x - 44 = 180;
2x = 180 + 44;
2x = 224;
x = 224 ÷ 2;
x = 112 ⇒∠AOB = 112°.
Угол ∠BOC можем найти двумя .
(1) Либо подставим найденное значение х в уравнение ∠BOC = (x - 44)°:
∠BOC = (112 - 44)° = 68°.
(2) Либо воспользуемся тем, что сумма смежных углов равна 180°:
∠AOB + ∠BOC = 180° ⇒
⇒ ∠BOC = 180° - ∠AOB = 180° - 112° = 68°.
ответ: ∠AOB = 112°, ∠BOC = 68°.
Удачи Вам! :)
1. После построения MN получается треугольник MNE, подобный треугольнику CDE по первому признаку подобия (угол Е - общий, углы С и NME равны как соответственные углы при пересечении двух параллельных прямых CD и MN секущей СЕ). Поскольку треугольники подобны, то <MNE = <CDE = 68°2. Зная, что развернутый угол равен 180°, находим угол DNM:<DNM = 180 - <MNE = 180 - 68 = 112°3. Поскольку DM - биссектриса, то угол MDN = <CDE : 2 = 68 : 2 = 34°4. Зная два угла треугольника DMN, находим неизвестный угол:<DMN = 180 - <MDN - <DNM = 180 - 34 - 112 = 34°