Найдите радиус меньшей окружности с центром в острого угла прямоугольного треугольника ABC, касающейся высоты СН, если LC = 90°, CH = 12 см и АВ = 25 см.
Мы знаем, что обыкновенные дроби подразделяются на сократимые и несократимые дроби. По названиям можно догадаться, что сократимые дроби можно сократить, а несократимые – нельзя.
Что же значит сократить дробь? Сократить дробь – это значит разделить ее числитель и знаменатель на их положительный и отличный от единицы общий делитель. Понятно, что в результате сокращения дроби получается новая дробь с меньшим числителем и знаменателем, причем, в силу основного свойства дроби, полученная дробь равна исходной.
Для примера, проведем сокращение обыкновенной дроби 8/24, разделив ее числитель и знаменатель на 2. Иными словами, сократим дробь 8/24 на 2. Так как 8:2=4 и 24:2=12, то в результате такого сокращения получается дробь 4/12, которая равна исходной дроби 8/24 (смотрите равные и неравные дроби). В итоге имеем .
В общем нужно выбрать такое число которым можно поделить знаменатель и числитель.
Мы знаем, что обыкновенные дроби подразделяются на сократимые и несократимые дроби. По названиям можно догадаться, что сократимые дроби можно сократить, а несократимые – нельзя.
Что же значит сократить дробь? Сократить дробь – это значит разделить ее числитель и знаменатель на их положительный и отличный от единицы общий делитель. Понятно, что в результате сокращения дроби получается новая дробь с меньшим числителем и знаменателем, причем, в силу основного свойства дроби, полученная дробь равна исходной.
Для примера, проведем сокращение обыкновенной дроби 8/24, разделив ее числитель и знаменатель на 2. Иными словами, сократим дробь 8/24 на 2. Так как 8:2=4 и 24:2=12, то в результате такого сокращения получается дробь 4/12, которая равна исходной дроби 8/24 (смотрите равные и неравные дроби). В итоге имеем .
В общем нужно выбрать такое число которым можно поделить знаменатель и числитель.
у = кх + в - уравнение прямой
Подставим координаты точки А(3; 5)
5 = к · 3 + в (1)
Подставим координаты точки В(-2; 1)
1 = к · (-2) + в (2)
Из уравнения (1) вычтем уравнение (2)
4 = 5к → к = 4/5 = 0,8
Из 1-го уравнения найдём в = 5 - 3к = 5 - 3 · 0,8 = 2,6
Таким образом, искомое уравнение имеет вид
у = 0,8х + 2,6
Можно это уравнение также записать в виде 5у = 4х + 13
или в виде 5у - 4х - 13 = 0 - это уж зависит от того, какие у вашего учителя требования. Но все они - уравнение одной и той же прямой
ответ: у = 0,8х + 2,6 или 5у = 4х + 13 или 5у - 4х - 13 = 0