Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
Объяснение: Через две пересекающиеся прямые AC и BD проведём плоскость АВСD. Четырёхугольник ABCD лежит в одной плоскости, так как две пересекающиеся прямые АС и BD определяют единственную плоскость. Если две параллельные плоскости пересекаются третьей, то прямые пересечения параллельны⇒ АВ ║CD. Тогда треугольникм АКВ и CKD подобны по двум углам (имеем даже три равных угла - <CKD=<AKB как вертикальные, а <BAC(BAK)=<ACD(KCD) и <ABD(ABK)=<BDC(KDC) как накрест лежащие при параллельных AB и CD и секущих АС и BD соответственно). Коэффициент подобия равен k=AB/CD=1/2. Из подобия имеем: KB/KD=1/2 => KD=KB*2 = 10см.
ответ: KD=10см.
m=V*p
m(p-pa)= 10 мл* 1,14г/мл = 114 г
Найдём массу серной кислоты в растворе.
m=m(p-pa)*W/100
m( кислоты)= 114*20/100= 22,8г
Найдём массу 5%-ного раствора кислоты.
m(p-pa2)= m(кислоты)/ W*100
m(p-pa2)= 22,8/5*100=456г
Найдём массу воды добовляемую к раствору( из массы 5%-ного раствора вычитаем массу 20%-ного)
m(H2O)=m(p-pa2)-m(p-pa)
m(H2O)=456-114=342г
Найдём объем воды которую необходимо долить(переведём массу воды в объем р=1г/мл)
V=m/p
V(H2O)=342г/1г/мл= 342 мл
ответ: необходимо добавить 342 мл воды