Найдите площадь треугольника АВС, если сторона ВС=7 см, а высота, проведенная к этой стороне АН=12 см. Найдите площадь прямоугольного треугольника, если его катеты равны 5 см и 13 см.
Две стороны треугольника равны 8 см и 4 см. Высота, проведенная к меньшей стороне, равна 6 см. Найдите высоту, проведенную к большей из данных сторон.
пожайлуста
ответ:8 корней из 105
Объяснение:
Сначала фотка с рисунком, потом с ручкой, потом с большим решением, а потом желтая фотка
2) На фото сумбурно, но попробую объяснить.
Объем равен произведению высоты на площадь (в нашем случае -- это правильный треугольник, поэтому я сразу поставила его формулу)
Дальше из прямоугольного треугольника составляю систему: теорема Пифагора и косинус (косинус-- это отношение прилягаемого катета к гипотенузе)
Из второго узнаем, что с=3а
3)На следующем фото у меня формула Герона, по которой можно найти площадь треугольника А1ВС. Но нам она известна, поэтому, подставив вместо с 3а, мы находим сторону а, из которой потом легко вывели с
4)Далее по теореме Пифагора, которую мы написали ранее, находим высоту. Теперь нам известно всё, чтобы узнать объем. Подставляем и готово
Объяснение:
ответ: площадь треугольника равна 12см^2.
Объяснение:
Площадь треугольника можно вычислить по формуле:
S=(1/2)*a*b*sina, где а и b - стороны треугольника, а sina - синус угла между этими сторонами.
S=(1/2)*6*8"(1/2)=12см^2.
Или так: проведем высоту ВН к стороне АС. Это катет, лежащий против угла 30°. Он равен половине гипотенузы.
Тогда если сторона АВ=6см (гипотенуза), а сторона АС=8см, то ВН=3см и площадь треугольника равна S=(1/2)*AC*BH =(1/2)*8*3=12см^2.
Если АВ=8см, а АС=6см, то ВН=4см и S=(1/2)*6*4=12см^2.