Поскольку трапеция равнобедренная, то диагонали её равны и отрезки диагоналей, примыкающих к основанию АВ равны между собой, так же как отрезки диагоналей примыкающих к основанию СD.
ВК = АК = х и CK = DK = у.
При этом х + у = 36/
∠АКВ = ∠DKC = 60° (углы вертикальные)
Тогда равнобедренный ΔАКВ, с углом при вершине ∠АКВ = 60° является равносторонним со стороной х. Следовательно, основание АВ трапеции равно х
АВ = х
Аналогично ΔDKC - равносторонний со стороной у. И основание трапеции
Объяснение: Биссектриса делит угол 130° на 2 равных по 65°.
Высота отсекает от треугольника прямоугольный треугольник с острым углом между высотой и боковой стороной 15°. (65°-50°=15°). Сумма острых углов треугольника 90°. Поэтому второй острый угол этого треугольника будет 90°-15°=75°. Получится, что сумма двух углов треугольника 130°+75°=205°, чего быть не может. А есть ведь ещё и третий угол.
Встречается подобная задача, где угол между высотой и биссектрисой 10°. Тогда решение возможно. Углы при основании получим 35° и 15°. При проверке сумма углов треугольника 130°+35°+15°=180°.
Длина средней линии равна 18.
Объяснение:
Поскольку трапеция равнобедренная, то диагонали её равны и отрезки диагоналей, примыкающих к основанию АВ равны между собой, так же как отрезки диагоналей примыкающих к основанию СD.
ВК = АК = х и CK = DK = у.
При этом х + у = 36/
∠АКВ = ∠DKC = 60° (углы вертикальные)
Тогда равнобедренный ΔАКВ, с углом при вершине ∠АКВ = 60° является равносторонним со стороной х. Следовательно, основание АВ трапеции равно х
АВ = х
Аналогично ΔDKC - равносторонний со стороной у. И основание трапеции
CD = у.
Средняя линия трапеции равна полусумме оснований
0,5 (АВ + CD) = 0.5 (x + y) = 0.5 · 36 = 18
ответ: Такого треугольника не может быть.
Объяснение: Биссектриса делит угол 130° на 2 равных по 65°.
Высота отсекает от треугольника прямоугольный треугольник с острым углом между высотой и боковой стороной 15°. (65°-50°=15°). Сумма острых углов треугольника 90°. Поэтому второй острый угол этого треугольника будет 90°-15°=75°. Получится, что сумма двух углов треугольника 130°+75°=205°, чего быть не может. А есть ведь ещё и третий угол.
Встречается подобная задача, где угол между высотой и биссектрисой 10°. Тогда решение возможно. Углы при основании получим 35° и 15°. При проверке сумма углов треугольника 130°+35°+15°=180°.
Подробное решение такой задачи дано мной на