3. По катету и гипотенузе, по 2 катетам, острому углу (PSK=RSK)
4. По гипотенузе и острому углу (ERF=ESF)
5. По катету и гипотенузе (Если SPM=TKM) По двум катетам (Если SRM=TRM)
6. По катету и гипотенузе (Если AED=BFD) По двум катетам (Если ACD=BCD)
7. прости, не знаю
8. ...
9. По катету и стороне (не уверена) (ADE=BFM)
10. По двум катетам (ADB=CBD)
Объяснение:
в 3 задании т.к. углы при основании PR равны, то прямоугольник равнобедренный, а значит треугольники прямоугольные, а KS делит основание напополам и их равенство можно доказать по 2 катетам, так как стороны боковые равны будут можно по катету и гипотенузе или же по гипотенузе и острому углу.
в 5 и 6 задании т.к. маленькие треугольники равны, то и углы при основании равны, а значит 2 треугольника в которых маленькие тоже прямоугольные.
1. По катету и гипотенузе (PAD=DCB)
2. По двум катетам (MKT=NKT)
3. По катету и гипотенузе, по 2 катетам, острому углу (PSK=RSK)
4. По гипотенузе и острому углу (ERF=ESF)
5. По катету и гипотенузе (Если SPM=TKM) По двум катетам (Если SRM=TRM)
6. По катету и гипотенузе (Если AED=BFD) По двум катетам (Если ACD=BCD)
7. прости, не знаю
8. ...
9. По катету и стороне (не уверена) (ADE=BFM)
10. По двум катетам (ADB=CBD)
Объяснение:
в 3 задании т.к. углы при основании PR равны, то прямоугольник равнобедренный, а значит треугольники прямоугольные, а KS делит основание напополам и их равенство можно доказать по 2 катетам, так как стороны боковые равны будут можно по катету и гипотенузе или же по гипотенузе и острому углу.
в 5 и 6 задании т.к. маленькие треугольники равны, то и углы при основании равны, а значит 2 треугольника в которых маленькие тоже прямоугольные.
Дано координати точок А(7 8) В(3 5) С(-5 9)
Треба знайти
2.) Рівняння висоти трикутника АВС, опущеної з вершини А на сторону
ВС;
Находим уравнение прямой ВС. Вектор ВС = (-5-3; 9-5) = (-8; 4).
Уравнение ВС: (x - 3)/(-8) = (y - 5)/4 или в общем виде x + 2y - 13 = 0.
В уравнении высоты АН из точки А на сторону ВС, представленной в виде Ax + By + C = 0 коэффициенты А и В меняются на -В и А.
Получаем уравнение АН: -2x + y + С = 0.
Для определения слагаемого С подставим координаты точки А:
-2*7 + 1*8 + С = 0, отсюда С = 14 - 8 = 6.
Уравнение ВС: -2x + y + 6 = 0 или 2x - y - 6 = 0.
3.) Рівняння медіани трикутника АВС, опущеної з вершини В на сторону
АС; Находим координаты точки М (основание медианы) как середину стороны АС: М = (А(7 8) + С(-5 9))/2 = (1; 8,5).
Вектор ВМ = (1-3; 8,5-5) = (-2; 3,5).
Уравнение ВМ: (x - 3)/(-2) = (y - 5)/3.5 или в целых единицах
(x - 3)/(-4) = (y - 5)/7. Оно же в общем виде 7x + 4y - 41 = 0.
4.) Рівняння прямої, яка проходить через точку С паралельно стороні ВС; Это и есть прямая ВС.
5.) Величину кута між прямими АВ та АС;
Находим векторы АВ и АС.
Вектор х у Квадрат Длина
АВ = -4 -3 25 5
АС = -12 1 145 12,04159458
cos A = (-4*(-12) + (-3)*1)/(5*√145) = = 0,747409319
A = 0,726642341 радиан
A = 41,63353934 градусов
6.) Відстань від точки С до прямої АВ.
Для вычисления расстояния от точки M(Mx; My) до прямой Ax + By + C = 0 используем формулу:
d = |A·Mx + B·My + C| / √(A² + B²).
Вектор АВ = (-4; -3).
Уравнение АВ: (x - 7)/(-4) = (y - 8)/(-3) или в общем виде 3x - 4y + 11 = 0.
Подставим в формулу коэффициенты точки С и уравнения стороны АВ:
d = |3·(-5) + (-4)·9 + 11| / √(3² + (-4)²) = |-15 - 36 + 11| / √(9 + 16) =
= 40 /√25 = 8.