Нарисуй прямоугольную трапецию , у которой высота равна длине меньшего основания ! одной прямой " разрежь " нарисованную трапецию на два четырёхугольника , из которых один является трапецией , а второй не является трапецией !
Радиус перпендикулярен касательной в точке касания. Касательные из одной точки к окружности равны. Отрезки, соединяющие центр окружности и точку, из которой проведены касательные являются биссектрисами углов между этими касательными и углов между радиусами, проведенными к этим касательным в точки касания. Сумма острых углов прямоугольного треугольника равна 90°. Сумма всех углов с вершиной в центре окружности равна 360°. Следовательно:
Радиус перпендикулярен касательной в точке касания. Касательные из одной точки к окружности равны. Отрезки, соединяющие центр окружности и точку, из которой проведены касательные являются биссектрисами углов между этими касательными и углов между радиусами, проведенными к этим касательным в точки касания. Сумма острых углов прямоугольного треугольника равна 90°. Сумма всех углов с вершиной в центре окружности равна 360°. Следовательно:
<NML=2*28=56°, <MNL=2*31=62°, <NLM=180-56-62=62°, <AOM=90-28=62°, <AON=90-31=59°, <NOB=<AON=59°, <MOC=<AOM=62°, <AOC=2*<AOM=124°, <AOB=2*<AON=118°, <COB=360-124-118=118°, <COL=<BOL=<COB:2 = 59°.
Задача решается через векторы.
Построим вектор ;
Середина D отрезка AB может быть найдена откладыванием половины вектора от точки A
;
Итак D( -9+4, 10-3 ) = D( -5, 7 ) ;
От точки D нужно отложить вектор высоты в обе возможные стороны
Вектор высоты перпендикулярен вектору основания , а значит его проекции накрест-пропорциональны с противоположным знаком:
(I) , что непосредственно следует из скалярного произведения, поскольку для перпендикулярных векторов должно выполняться: (II) ;
Таким образом вектор пропорционален вектору , поскольку для вектора выполняется и равенство (I) и равенство (II) осталось лишь найти масштаб вектора ;
Вектор имеет длину ;
Аналогично, AB = 10
При этом, поскольу треугольник равносторонний, то значит его высота составляет , т.к ;
Значит , а стало быть ;
В итоге .
Откладываем этот вектор в разные стороны (+\-) от точки D( -5, 7 ) и получаем:
ОТВЕТ:
/// примечание: ;
/// примечание: .