Из треугольника КВМ имеем то, что он прямоугольный с углом ВМК = 30. Отсюда КВ = половине гипотенузы, те = 2. По теореме Фалеса КМ делит сторону АВ пополам, т.е. АВ = 4. Из прямоугольного треугольника АВД АВ гипотенуза равна удвоенному АВ, как катету против угла в 30 градусов. АД=8. По теореме Пифагора ВД = √64 - 16 = √48 = 4√3 см. Площадь параллелограмма равна 4*4√3 = 16√3 см². Площадь треугольника АВД равна половине площади параллелограмма, а площадь треугольника АМД равна половине площади треугольника АВД., т.к. у них одно основание АД, а высоты относятся как 1:2. Значит, площадь треугольника АМД = 16√3/4 = 4√3 см²
Боковые стороны прямоугольной трапеции равны 15 см и 17 см, средняя линия равна 6 см. Найдите основания трапеции
Прямоугольной трапецией называется трапеция, в которой хотя бы один угол прямой угол А=90*, следовательно АД - высота сделаем дополнительное построение треугольники СС1О и ВВ1О равны по двум сторонам и углу между ними, следовательно СС1=ВВ1 С1О=В1О = 15/2=7,5 СО=ВО=17/2=8,5 по теореме Пифагора СС1= корень из (СО"-С1О") = корень из (72,25-56,25) = 4 средняя линия равна (а+в) /2 а=6-4=2 в=6+4=10 ответ: основания трапеции равны 2 и 10
Площадь параллелограмма равна 4*4√3 = 16√3 см².
Площадь треугольника АВД равна половине площади параллелограмма, а площадь треугольника АМД равна половине площади треугольника АВД., т.к. у них одно основание АД, а высоты относятся как 1:2. Значит, площадь треугольника АМД = 16√3/4 = 4√3 см²
Прямоугольной трапецией называется трапеция, в которой хотя бы один угол прямой
угол А=90*, следовательно АД - высота
сделаем дополнительное построение
треугольники СС1О и ВВ1О равны по двум сторонам и углу между ними, следовательно СС1=ВВ1
С1О=В1О = 15/2=7,5
СО=ВО=17/2=8,5
по теореме Пифагора СС1= корень из (СО"-С1О") = корень из (72,25-56,25) = 4
средняя линия равна (а+в) /2
а=6-4=2
в=6+4=10
ответ: основания трапеции равны 2 и 10