34 см
Объяснение:
Дано: ABCD - параллелограмм
BM = DC = 7 см, MD = 3 см, ∠ABM=60°.
Найти: Р
1. BM = DC (условие)
АВ = DC
⇒ BM = DC = АВ = 7см
2. Рассмотрим ΔАВМ.
BM = АВ = 7 см (п.1)
⇒ ΔАВМ - равнобедренный
⇒ ∠А=∠1
⇒ ∠А=∠1=(180°-∠АВМ):2=60°
⇒ ΔАВМ - равносторонний.
⇒АВ = АМ = 7см
3. Найдем периметр:
АВ = CD = 7 см; АD = ВС = 3+7 = 10 (см)
Р = 10+10+7+7=34 (см)
34 см
Объяснение:
Дано: ABCD - параллелограмм
BM = DC = 7 см, MD = 3 см, ∠ABM=60°.
Найти: Р
1. BM = DC (условие)
Противоположные стороны параллелограмма равны.АВ = DC
⇒ BM = DC = АВ = 7см
2. Рассмотрим ΔАВМ.
BM = АВ = 7 см (п.1)
⇒ ΔАВМ - равнобедренный
Углы при основании равнобедренного треугольника равны.⇒ ∠А=∠1
Сумма углов треугольника равна 180°.⇒ ∠А=∠1=(180°-∠АВМ):2=60°
В равностороннем треугольнике углы равны 60°.⇒ ΔАВМ - равносторонний.
⇒АВ = АМ = 7см
3. Найдем периметр:
Периметр - сумма длин всех сторон.АВ = CD = 7 см; АD = ВС = 3+7 = 10 (см)
Р = 10+10+7+7=34 (см)