На сторонах ab и bc треугольника abc соответственно взяты точки m и n так, что am: mb=3: 4 и bn: nc=3: 5. найдите площадь треугольника abc,если площадь bmn равна 9.. _ !
Из заданных соотношений видно, что сторона АВ содержит 7 равных частей , а ВС 8 равных частей пропорции. Тогда МВ=4/7АВ, а ВN=3/8ВС. Площадь треугольника BMN равна Sbmn=1/2*МВ*ВN*sinB=1/2*(4/7АВ)*(3/8ВС)*sinВ=(1/2*АВ*ВС*sinВ)*12/56=Sавс*12/56=9. Отсюда Sавс=(56*9)/12=42.
Из заданных соотношений видно, что сторона АВ содержит 7 равных частей , а ВС 8 равных частей пропорции. Тогда МВ=4/7АВ, а ВN=3/8ВС. Площадь треугольника BMN равна Sbmn=1/2*МВ*ВN*sinB=1/2*(4/7АВ)*(3/8ВС)*sinВ=(1/2*АВ*ВС*sinВ)*12/56=Sавс*12/56=9. Отсюда Sавс=(56*9)/12=42.