Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
2.
ABCD - параллелограмм
BC || AD; ED - секущая, тогда
∠ADE=∠DEC=55°(внутренние накрест лежащие)
ΔECD - равнобедренный значит
∠DEC=∠EDC=55°
∠BED=180°-55°=125°(смежные)
∠DEC+∠EDC+∠C=180°(сумма всех углов треугольника)
55°+55°+∠C=180°, отсюда ∠C=70°
∠C=∠А=70°
∠А+∠B=180°(свойство параллелограмма)
70°+∠B=180°, значит ∠B=110°
∠B=∠D=110°
ответ: ∠DEC=∠EDC=55°;∠C=∠А=70°; ∠B=∠D=110°
3.
RM - биссектриса, значит
∠LRM=∠MRS=90°/2=45°
∠LMR=180°-(45°+90°)=45° (сумма всех углов треугольника)
ответ: ∠LRM=∠MRS=45°;∠LMR=45°;∠K=∠S=90°