На окружности радиусом 5 отмечены точки A, B, C так, что градусная мера дуги AB равна 30°, а дуги ABC – 180°. Точка D лежит на окружности между точками A и B. Найдите длины перечисленных дуг и круговых секторов, содержащих эти дуги. ответ дайте с точностью до сотых.
n=-1
m=1.5
Объяснение:C(2m+n;7;-n) , D(-3;-5;m-3). CA÷AD=2÷3. Так как А относится к оси Оу, то Xa=0, Za=0.
По формуле: Xa=(Xc+(2÷3)×Xd)÷(1+(2÷3)) , Таже формула с Z.
Xa=(2m+n+(2÷3)×(-3))÷(1+(2÷3))=(2m+n-2)÷(5÷3)=(6m+3n-6)÷5
Za=(-n+(2÷3)×(m-3))÷(1+(2÷3))=((2m-6-3n)÷3)÷(5÷3)=(2m-6-3n)÷5
/ (2m-6-3n)÷5=0 / 2m-6-3n=0 / n=2-2m / n=-1
| ⇒| ⇒| ⇒|
\ (6m+3n-6)÷5=0 \ 6m+3n-6=0 \ 2m-3×(2-2m)=6 \ m=1.5
÷ - знак деления
× - знак умножения
/
| - скобка
\
6. ∆АВС- прямоугольные (<С=90).
<В=90°-<А=90-60=30°(по свойству острых углов в прямоугольном треугольнике) ==> по свойству катет, лежащий против угла в 30 градусов, равен половине гипотенузы ==>АС=½АВ==>АВ=2АС=2*4=8 (см)
ответ: АВ=8 см
7. по свойству высоты, проведенной в прямоугольном треугольнике из вершины прямого угла: СД=½АВ==> АВ=2СД=2*6=12 см
ответ: 12 см.
8. х- 1 часть
<А=2х <В=х
сумма А и В=90°
составим и решим уравнение:
2х+х=90
3х=90
х=30
<А=60° <В=30°==> по свойству: катет лежащий против угла в 30 градусов равен половине гипотенузы: ==>АС=½АВ=7 см
ответ: 7 см