P(DKC) = CD + CK + DK P(DKE) = DE + KE + DK как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е 14 = 16 + 18 - 4DK 4DK = 16 + 18 - 14 DK = 5 см Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см. Теперь находим стороны прямоугольника. DС = ЕF = 16 - 5 - 5 = 6 см DE = CF = 18 - 5 - 5 = 8 см Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
Пусть коэффициент пропорциональности равен х, (x>0), тогда высоты равны 5х/см/ и 7х/см/, если меньшая сторона у/см/, периметр 72см, полупериметр 36см, тогда большая сторона (36-у).
Т.к. площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне, (учитываем, что к большей стороне проводится меньшая диагональ, а к меньшей стороне большая диагональ), составим и решим уравнение.
5х*(36-у)=7х*у, сокращая на положительную величину х, получим
5*(36-у)=7у⇒12у=5*36; у=5*36/12=15, значит, меньшая сторона 15 см, а большая 36-15=21/см/, значит, две стороны у параллелограмма равны по 15см, а две другие по 21см, т.к. противоположные стороны параллелограмма равны. Заметим, что отношение меньшей стороны к большей равно 15/21=5/7, т.е. такое же, как и у высот.
Можно было бы решить задачу, учитывая последнее соотношение, но непременно показать, что то, что дано в условии, это не отношение сторон, а отношение высот.
ответ: стороны параллелограмма равны 15см, 21см, 15см, 21см.
P(DKE) = DE + KE + DK
как видно, и в том, и в другом периметре фигурирует сторона DK, а CK = KE = DK. Найдем сторону DK. Диагональ СЕ делит прямоугольник на два треугольника. Периметр треугольника CDE = периметру треугольника CEF = половине периметра прямоугольника CDEF = 28/2 = 14 cм. В свою очередь, периметр CDE равен также сумме периметров DKC и DKE минус 4DK, т.е
14 = 16 + 18 - 4DK
4DK = 16 + 18 - 14
DK = 5 см
Диагонали, при пересечении друг с другом, делятся пополам и образуют равнобедренные треугольники, значит DK = CK = КЕ = КF = 5 см.
Теперь находим стороны прямоугольника.
DС = ЕF = 16 - 5 - 5 = 6 см
DE = CF = 18 - 5 - 5 = 8 см
Проверка: Р(CDEF) = (6 + 8) * 2 = 28 см
Пусть коэффициент пропорциональности равен х, (x>0), тогда высоты равны 5х/см/ и 7х/см/, если меньшая сторона у/см/, периметр 72см, полупериметр 36см, тогда большая сторона (36-у).
Т.к. площадь параллелограмма равна произведению стороны на высоту, проведенную к этой стороне, (учитываем, что к большей стороне проводится меньшая диагональ, а к меньшей стороне большая диагональ), составим и решим уравнение.
5х*(36-у)=7х*у, сокращая на положительную величину х, получим
5*(36-у)=7у⇒12у=5*36; у=5*36/12=15, значит, меньшая сторона 15 см, а большая 36-15=21/см/, значит, две стороны у параллелограмма равны по 15см, а две другие по 21см, т.к. противоположные стороны параллелограмма равны. Заметим, что отношение меньшей стороны к большей равно 15/21=5/7, т.е. такое же, как и у высот.
Можно было бы решить задачу, учитывая последнее соотношение, но непременно показать, что то, что дано в условии, это не отношение сторон, а отношение высот.
ответ: стороны параллелограмма равны 15см, 21см, 15см, 21см.