Вспоминаем свойство диагоналей прямоугольника: Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам. Значит ΔАОД и ΔВОА - равнобедренные, и ∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40° АЕ=ЕВ, т. к. по условию Е - середина АВ. То есть в ΔВОА ОЕ - медиана. Далее вспоминаем следующее свойство равнобедренного треугольника: Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой. Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит: ∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам.
Значит ΔАОД и ΔВОА - равнобедренные, и
∠ОВА=∠ОАВ, ∠ОАД=∠ОДА=90°-50°=40°
АЕ=ЕВ, т. к. по условию Е - середина АВ.
То есть в ΔВОА ОЕ - медиана.
Далее вспоминаем следующее свойство равнобедренного треугольника:
Биссектриса, медиана и высота, проведённые к основанию, совпадают между собой.
Таким образом ОЕ⊥АВ и ДА⊥АВ, то есть ДА параллельна ОЕ, ∠ОДА+∠ЕОД=180°, как сумма односторонних углов, значит:
∠ЕОД=180°-40°=140°
...Ну и как "Лучшее решение" не забудь отметить, ОК?!.. ;)
---
PK -?
PK тоже диаметр в этой окружности (∠PCK ≡∠ACB=90°) .
Значит PK =HC =√(AH*BH) =√(8*18) =√(2*4*2*9) =2*2*3 =12.
ответ :12.
"длинный путь" :
CH =√(AH*BH) =√(8*18) =12.
AC² =AB*AH ; AB =AH+BH =8+18 =26 ;
AC =√26*8 =4√13 ;
BC² =AB*BH ;
BC =√26*18 =18√13 .
∠HPC =90°.
Из ΔAHC: CH ² =AC*CP ⇒CP =CH²/AC = 144/(4√13) = 36/√13 .
∠HKC =90°.
Из ΔBHC: CH ² =BC*CK ⇒CK =CH²/AC = 144/(6√13) = 24/√13 .
Из ΔPCR: PR =√((CP)² +(CK)²) = √((36/√13)²+(24/√13)²) =√( (12²/13)*(3² +2²) =12