Найдем величину тупого угла ромба. (360-60*2):2=120. Т.к. сумма всех углов равна 360, и противоположные углы равны. Проведем диагональ ромба, соединяющую два его тупых угла. Диагональ ромба является биссектриссой. Т.о. эта диагональ разделила наш ромб на два раносторонних треугольника, т.к. все углы получились по 60 градусов, значит треугольник равносторонний. В равностороннем треугольнике высота является медианой. Медиана делит противоположную сторону на два равных отрезка Значит длины отрезков на которые высота разделила сторону равны 32:2=16
Дано два цилиндра. Объем первого цилиндра равен 80. У второго цилиндра высота в 3 раза больше, а радиус основания в 4 раза меньше, чем у первого.Найдите объем второго цилиндра.
Решение.
1) Пусть V₁ =πR²*H = 80 - объём первого цилиндра, где R - радиус его основания, а H - высота;
тогда V₂ =π(R/4)²*(H*3) = πR²*H * (3/16) - объём второго цилиндра.
2) Так как объём второго цилиндра составляет 3/16 от объёма первого цилиндра, то этот объём равен:
Проведем диагональ ромба, соединяющую два его тупых угла. Диагональ ромба является биссектриссой. Т.о. эта диагональ разделила наш ромб на два раносторонних треугольника, т.к. все углы получились по 60 градусов, значит треугольник равносторонний. В равностороннем треугольнике высота является медианой. Медиана делит противоположную сторону на два равных отрезка Значит длины отрезков на которые высота разделила сторону равны 32:2=16
15 ед. изм.³
Объяснение:
Условие задачи.
Дано два цилиндра. Объем первого цилиндра равен 80. У второго цилиндра высота в 3 раза больше, а радиус основания в 4 раза меньше, чем у первого.Найдите объем второго цилиндра.
Решение.
1) Пусть V₁ =πR²*H = 80 - объём первого цилиндра, где R - радиус его основания, а H - высота;
тогда V₂ =π(R/4)²*(H*3) = πR²*H * (3/16) - объём второго цилиндра.
2) Так как объём второго цилиндра составляет 3/16 от объёма первого цилиндра, то этот объём равен:
80 * 3/16 = 5 * 3 = 15 единиц измерения³.
ответ: 15 ед. изм.³