Диагонали ромба перпендикулярны и точкой пересечения делятся пополам. Тогда в треугольнике АОВ: ∠АОВ = 90°, АО = 20 см, ОВ = 15 см. По теореме Пифагора АВ = √(АО² + ОВ²) = √(400 + 225) = √625 = 25 см
Расстоянием от точки М до сторон АВ и ВС является длина перпендикуляра МВ. 7 см.
Проведем высоты ВК и ВН. Эти отрезки - проекции наклонных МК и МН на плоскость ромба. ВК ⊥ CD, BH ⊥ AD, ⇒ MK ⊥ CD, MH ⊥ AD по теореме о трех перпендикулярах. Значит, МК и МН - расстояния до сторон CD и AD.
Диагонали ромба являются биссектрисами его углов. ∠BDH = ∠BDK, BD - общая гипотенуза для треугольников BDH и BDK, значит ΔBDH = ΔBDK по гипотенузе и острому углу. Значит, ВК = ВН, тогда и МК = МН (если наклонные, проведенные из одной точки, имеют равные проекции, то они равны).
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
Тогда в треугольнике АОВ:
∠АОВ = 90°, АО = 20 см, ОВ = 15 см. По теореме Пифагора
АВ = √(АО² + ОВ²) = √(400 + 225) = √625 = 25 см
Расстоянием от точки М до сторон АВ и ВС является длина перпендикуляра МВ. 7 см.
Проведем высоты ВК и ВН. Эти отрезки - проекции наклонных МК и МН на плоскость ромба.
ВК ⊥ CD, BH ⊥ AD, ⇒ MK ⊥ CD, MH ⊥ AD по теореме о трех перпендикулярах.
Значит, МК и МН - расстояния до сторон CD и AD.
Диагонали ромба являются биссектрисами его углов.
∠BDH = ∠BDK, BD - общая гипотенуза для треугольников BDH и BDK, значит ΔBDH = ΔBDK по гипотенузе и острому углу.
Значит, ВК = ВН, тогда и МК = МН (если наклонные, проведенные из одной точки, имеют равные проекции, то они равны).
Sabcd = AD·BH = AC·BD/2
BH = AC·BD/(2AD) = 40·30/50 = 24 см
ΔМВН: по теореме Пифагора
МН = √(МВ² + ВН²) = √(49 + 576) = √625 = 25 см
ответ: Расстояние до сторон АВ и ВС 7 см, до сторон CD и AD 25 см.
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.