Контрольная работа по теме Окружность 1. Углы, образованные касательной и радиусом окружности 2. Радиус окружности, угол между касательной и хордой 3. Центральный и вписанный в окружность угол 4. Радиус окружности, вписанной в трапецию 5. Радиус и площадь круга, вписанного в ромб
АВД и ВСД подобны Тупым в треугольнике АВД может быть только угол АВД значит, он равен ВСД. Скрещивающиеся углы СВД И АДВ равны. В треугольнике АВД между углами АВД и АДВ сторона ВД. В треугольнике ВСД между аналогичными углами ВСД и СВД сторона ВС. В АВД между АВД и ВАД сторона АВ; в ВСД между ВСД и ВДС сторона СД
то есть коэффициент подобия равен
ВД/ВС=АВ/СД=АД/ВД=3 (я рассуждаю так: например, ВД больше ВС, значит, ВД/ВС больше единицы а так как ВД/ВС=АВ/СД отношению боковых сторон, и оно больше 1, значит, (по условию) оно равно 3)
К – точка пересечения касательных. Угол К – прямой. КО2 – биссектриса угла К. А и А, а так же В и В – точки касания окружностей касательных. АА и ВВ – хорды окружностей, пересекают биссектрису в точках М и Н соответственно. О1 и О2 – центры окружностей. На рисунке видно, что расстояние между центрами окружностей О1О2 = r + R. Найдем r. АО1 параллельна КА. Т.к КО1 – биссектриса угла К, то АА перпендикулярна КО1. Следовательно ∠КАМ = ∠МАО1 = 90/2 = 45° Т.к. ∠АМО1 = 90°, то ∠АО1М = 180 – 90 – 45 = 45°. Таким образом, ΔАМО1 – равнобедренный и О1М = АМ = (2√2)/2 = √2. Следовательно, r = √{(√2)² + (√2)²} = √4 = 2. Аналогично для R: О2Н = ВН = (10√2)/2 = 5√2. Тогда R = √{(5√2)² +(5√2)²} = √(25*2) + (25*2) = √100 = 10. Расстояние между центрами окружностей = 2 + 10 = 12
АДВ=СВД
ВАД=ВДС
АВ=3СД
АД=9ВС
АВД и ВСД подобны
Тупым в треугольнике АВД может быть только угол АВД
значит, он равен ВСД.
Скрещивающиеся углы СВД И АДВ равны.
В треугольнике АВД между углами АВД и АДВ сторона ВД.
В треугольнике ВСД между аналогичными углами ВСД и СВД сторона ВС.
В АВД между АВД и ВАД сторона АВ;
в ВСД между ВСД и ВДС сторона СД
то есть коэффициент подобия равен
ВД/ВС=АВ/СД=АД/ВД=3
(я рассуждаю так: например, ВД больше ВС,
значит, ВД/ВС больше единицы
а так как ВД/ВС=АВ/СД
отношению боковых сторон, и оно больше 1,
значит, (по условию) оно равно 3)
ВД/ВС=АВ/СД=АД/ВД=3
ВД/ВС=3
АД/ВД=3
ВД=3ВС
ВД=АД/3
3ВС=АД/3
9ВС=АД
АД/ВС=9
ответ: в 9 раз
ответ: Расстояние между центрами окружностей = 12
Объяснение: Смотрите рисунок.
К – точка пересечения касательных. Угол К – прямой. КО2 – биссектриса угла К. А и А, а так же В и В – точки касания окружностей касательных. АА и ВВ – хорды окружностей, пересекают биссектрису в точках М и Н соответственно. О1 и О2 – центры окружностей. На рисунке видно, что расстояние между центрами окружностей О1О2 = r + R. Найдем r. АО1 параллельна КА. Т.к КО1 – биссектриса угла К, то АА перпендикулярна КО1. Следовательно ∠КАМ = ∠МАО1 = 90/2 = 45° Т.к. ∠АМО1 = 90°, то ∠АО1М = 180 – 90 – 45 = 45°. Таким образом, ΔАМО1 – равнобедренный и О1М = АМ = (2√2)/2 = √2. Следовательно, r = √{(√2)² + (√2)²} = √4 = 2. Аналогично для R: О2Н = ВН = (10√2)/2 = 5√2. Тогда R = √{(5√2)² +(5√2)²} = √(25*2) + (25*2) = √100 = 10. Расстояние между центрами окружностей = 2 + 10 = 12