Из треугольника AMN можно вычислить, что угол А= 30 (180-60-90=30), тогда катет, который лежит напротив угла 30 град. = половине гипотенузы, то есть MN=1/2 AN, AN=2MN=2*6=12. Так как N середина AB, то AB = 24. Из треугольника AMN tg 60=AM/MN. AM=tg60*MN=6sqrt3 (sqrt-корень) Так как М - середина АС, то АС = 12sqrt3. Рассмотрим треугольник АВС. Угол А=30, значит противоположный катет СВ=половине гипотенузы. CB=1/2AB=12. Рассмотрим треугольник BCM. CM=6sqrt3, CB=12, C=90 градусов. По теореме Пифагора МВ=6sqrt7. Площадь прямоугольного треугольника = 1/2 произведение катетов. S(треугольника AMN)=1/2*6sqrt3*6=18sqrt3
Две различные прямые либо имеют только одну общую точку, либо не имеют ни одной общей точки. В первом случае говорят, что прямые пересекаются, во втором случае — прямые не пересекаются.
Две прямые на плоскости называются параллельными, если они не пересекаются.
Аксиома параллельных прямых. Через данную точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
Если при пересечении двух прямых секущей:
накрест лежащие углы равны, илисоответственные углы равны, илисумма односторонних углов равна 180°, то прямые параллельны
Если две параллельные прямые пересечены секущей, то:
накрест лежащие углы равны;соответственные углы равны;сумма односторонних углов равна 180°.
Две различные прямые либо имеют только одну общую точку, либо не имеют ни одной общей точки. В первом случае говорят, что прямые пересекаются, во втором случае — прямые не пересекаются.
Две прямые на плоскости называются параллельными, если они не пересекаются.Аксиома параллельных прямых. Через данную точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.
Если при пересечении двух прямых секущей:
накрест лежащие углы равны, илисоответственные углы равны, илисумма односторонних углов равна 180°, то прямые параллельныЕсли две параллельные прямые пересечены секущей, то:
накрест лежащие углы равны;соответственные углы равны;сумма односторонних углов равна 180°.