1. Диагонали прямоугольника равны, а также, по свойству параллелограмма, точкой пересечения делятся пополам. Соответственно, EB = DE = AE = EC.
2. Рассмотрим треугольник ВЕС. Так как EB = EС (по выше доказанному), то он равнобедренный. Тогда ∠EBC = ∠ECB = 65° (по свойству равнобедренного треугольника). По теореме о сумме углов треугольника, имеем, что - ∠BEC = 180°-(65°+65°) = 50°.
(Хочу подметить, что ∠DEC тоже находится между диагоналями, но так как он смежный вместе с углом в 50° (острым), то он тупой. А по условию нам нужен не тупой, а острый.)
• 3. Теперь, мы узнаём сторону квадрата. Это записывается так:
3)900 : 4 = 225 ( м ) – сторона квадрата
• 4. А теперь, мы можем узнать площадь квадрата, и потом в пятом действии записать и сравнить, чья площадь больше – квадрата или прямоугольника. Но смотря, какая у вас программа : если у вас программа Л.Г. Петерсона, то записывать нужно, но, а если у вас программа Рудницкой или Моро и др., то не нужно. Это записывается так:
4)225 ˣ 225 = 50 625 ( м² )
• 5. А вот когда мы узнали площадь квадрата и прямоугольника, то мы можем сравнить, чья площадь больше. Это записывается так:
5)50 625 > 32 400
• или...
5)32 400 < 50 625
• 6. А вот на сколько площадь квадрата больше площади прямоугольника мы не знаем. Но мы можем решить! Для этого нам нужно:
6)50 625 – 32 400 = 18 225 ( м )
— | Мы узнали то, что площадь квадрата больше площади прямоугольника. И на сколько. Мы можем записать ответы. ответы, потому что у нас в данной задаче два во ответ: Площадь участка квадратной формы больше площади участка прямоугольной формы; на 18 225 м площадь участка квадратной формы больше площади участка прямоугольной формы.
Дано:
ABCD - прямоугольник.
АС и DB - диагонали.
Е - точка пересечения диагоналей.
∠DBC = 65°.
Найти:
∠BEC = ?
1. Диагонали прямоугольника равны, а также, по свойству параллелограмма, точкой пересечения делятся пополам. Соответственно, EB = DE = AE = EC.
2. Рассмотрим треугольник ВЕС. Так как EB = EС (по выше доказанному), то он равнобедренный. Тогда ∠EBC = ∠ECB = 65° (по свойству равнобедренного треугольника). По теореме о сумме углов треугольника, имеем, что - ∠BEC = 180°-(65°+65°) = 50°.
(Хочу подметить, что ∠DEC тоже находится между диагоналями, но так как он смежный вместе с углом в 50° (острым), то он тупой. А по условию нам нужен не тупой, а острый.)
ответ: 50°.
` ` — Здравствуйте, Levva007! ` `
• Объяснение:
— | Прежде чем нам решить данную задачу, сначала нужно отметить в ней главные слова: | —
• Первый участок имеет форму прямоугольника со сторонами 360 м и 90 м, второй участок имеет форму квадрата.
— | Отметили. Теперь, когда мы знаем главные слова в данной задаче, мы можем начать её решать. | —
• Решение:
• 1. Сначала, мы с вами должны узнать площадь прямоугольника. Это записывается так:
1)360 ˣ 90 = 32 400 ( м² ) – площадь прямоугольника.
• 2. Теперь, мы можем узнать периметр прямоугольника. Это записывается так:
2)360 ˣ 2 + 90 ˣ 2 = 900 ( м ) – периметр прямоугольника
• 3. Теперь, мы узнаём сторону квадрата. Это записывается так:
3)900 : 4 = 225 ( м ) – сторона квадрата
• 4. А теперь, мы можем узнать площадь квадрата, и потом в пятом действии записать и сравнить, чья площадь больше – квадрата или прямоугольника. Но смотря, какая у вас программа : если у вас программа Л.Г. Петерсона, то записывать нужно, но, а если у вас программа Рудницкой или Моро и др., то не нужно. Это записывается так:
4)225 ˣ 225 = 50 625 ( м² )
• 5. А вот когда мы узнали площадь квадрата и прямоугольника, то мы можем сравнить, чья площадь больше. Это записывается так:
5)50 625 > 32 400
• или...
5)32 400 < 50 625
• 6. А вот на сколько площадь квадрата больше площади прямоугольника мы не знаем. Но мы можем решить! Для этого нам нужно:
6)50 625 – 32 400 = 18 225 ( м )
— | Мы узнали то, что площадь квадрата больше площади прямоугольника. И на сколько. Мы можем записать ответы. ответы, потому что у нас в данной задаче два во ответ: Площадь участка квадратной формы больше площади участка прямоугольной формы; на 18 225 м площадь участка квадратной формы больше площади участка прямоугольной формы.
` ` — С уважением, EvaTheQueen! ` `