Пусть основание равно Х, тогда боковая сторона равна (Х-9). В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна √[(Х-9)²-(X/2)²]=√(15²-12²)=9см. ответ: высота, проведенная к основанию, равна 9см.
Допустим AB =5 , BC =6 , BM =5 ,( AM =MC , M∈[AC] .
AC - ? Продолжаем медиана и на ней откладываем отрезок MD=BE. Соединяем полученную точку с вершинами. Полученный четырехугольник ABCD параллелограмма. Для параллелограмм верно теорема_сумма квадратов диагоналей равно сумму квадратов сторон .AC²+BD² = 2(AB²+BC²)⇒AC²=2(AB²+BC²) - BD² || BD=2BM=10 || AC² =2(5² +6²) -(2*5)²=22. AC =√22. ответ: √22.
В треугольнике, образованном высотой, проведенной к основанию, боковой стороной и половиной основания (данный нам треугольник равнобедренный) биссектриса угла при основании делит эту высоту в отношении 5:4, значит по свойству биссектрисы: "Биссектриса делит сторону, противолежащую углу в отношении сторон, образующих данный угол", имеем: (Х-9)/(Х/2)=5/4 или (9-Х)*2/Х=5/4. Тогда 8Х-72=5Х, отсюда Х=24. Итак, по Пифагору искомая высота равна
√[(Х-9)²-(X/2)²]=√(15²-12²)=9см.
ответ: высота, проведенная к основанию, равна 9см.
AC - ?
Продолжаем медиана и на ней откладываем отрезок MD=BE. Соединяем полученную точку с вершинами. Полученный четырехугольник ABCD параллелограмма.
Для параллелограмм верно теорема_сумма квадратов диагоналей равно сумму квадратов сторон .AC²+BD² = 2(AB²+BC²)⇒AC²=2(AB²+BC²) - BD² || BD=2BM=10 ||
AC² =2(5² +6²) -(2*5)²=22.
AC =√22.
ответ: √22.
Или
Из ΔAMB по теореме косинусов
AB² =AM² +BM² -2AM*BM*cos∠AMB (1)
Аналогично из ΔCMB ,CB² =CM²+BM² -2CM*BM*cos(180° -∠AMB) или
CB² =CM²+BM² +2CM*BM*cos∠AMB (2)
Складывая уравнения (1) и (2) получаем :
AB² +CB²= AM²+CM² +2BM² ;
AB² +CB²= (AC/2)²+(AC/2)² +2BM² ;
AB² +CB²= AC²/2 +2BM² ;
2(AB² +CB²)= AC² +(2BM)² ; * * *AC² + BD² =2(AB² +CB²) || BD=2BM.* *
AC² = 2(AB² +CB²) -(2BM)²